Rethinking building envelope design: Machine learning approaches to evaluate its impact on indoor ozone exposures

Author:

Ma N,Zhang Q,Braham W W

Abstract

Abstract Ozone is widely recognized as an ambient air contaminant that causes acute and chronic health effects. However, there is a limited number of studies investigating indoor exposures to ozone in occupied houses and linking design variables to the predictive power of indoor ozone levels. This study focuses on typical envelope airflow paths used in residences in the Philadelphia area in the United States. The model development draws from the field data, including indoor and outdoor ozone concentration, environmental parameters, and building characteristics from four building envelopes. Five machine learning algorithms (i.e., support vector machine, lasso regression, random forest, Bayesian bridge regression, and gradient boosting) are employed, with indoor ozone concentration as the dependent variable, as it indicates how the hot and sunny weather that might lead to the possibility of indoor air quality (IAQ) alerts due to ozone. The results showed that gradient boosting model based on all field measurements had the highest R-squared value of 0.974 and low enough root mean square error (RMSE) and mean absolute error (MAE) which are 1.182 and 0.788, respectively. We conclude that indoor ozone forecasting model based on inputting environmental survey (ES) in addition to either design variables or indoor environment characteristics can effectively predict and can therefore be used at the building design phase to improve healthy living environments.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3