A new urban canopy parameterization scheme for wind environment simulations

Author:

Duan Cuie12,Lu Weizhen2,Zhang Yunwei1,Gu Zhaolin1

Affiliation:

1. School of Human Settlement and Civil Engineering, Xi’an Jiaotong University, Xi’an, China

2. Department of Civil and Architectural Engineering, City University of Hong Kong, Hong Kong, China

Abstract

This paper concerns urban canopies populated with tall slender buildings. To clarify the controlling factors of urban canopies, we simulated a series of single high-rise buildings under fully developed turbulence at a realistic scale by large-eddy simulation. We then analysed correlations between the drag force and recirculation area, frontal area, surface area, floor area, porosity and inlet velocity. Our results show that the recirculation length and recirculation area were proportional to the width, height and wind speed, but were inversely proportional to the length of a building. New equations for the recirculation length and area are presented. The maximum error of the recirculation length equation was 6.66%, and the maximum error of the recirculation area equation was 7.49%. The drag source characteristic length was found to be proportional to the recirculation area, frontal area and surface area and inversely proportional to the porosity and height, but was not closely related to floor area. A new local scale drag source model was developed and applied to a complex urban canopy of Xi’an. The model was applied to 7 × 7 buildings and show good agreement with the solid wall simulation results.

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3