Numerical simulation of the effects of canopy properties on airflow and pollutant dispersion in street canyons

Author:

Wang Le12ORCID,Tian Wen-Xin3,Zhao Xiu-Yong3,Huang Chuan-Qing4

Affiliation:

1. Mechanical Engineering College, Xi‘an Shiyou University, Xi‘an, China

2. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, CAS, Xi'an, China

3. State Environmental Protection Key Laboratory of Atmospheric Physical Modeling and Pollution Control, Nanjing, China

4. College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi‘an, China

Abstract

The air flow and pollutant concentration fields in a street canyon affected by trees could affect the comfort and health of residents. At present, the description of the non-uniform/discontinuous distribution of leaves is difficult. In this study, the leaf distribution in the canopy was characterized by establishing non-continuous (uniform/random) algorithm based on a numerical simulation method, and the effects of canopy properties including, height, porosity and uniform/random leaf distribution, on the airflow and pollutant concentration fields in urban street canyons were investigated. The position of the tree canopy was found to directly affect the airflow field form and the air velocity distribution in the street canyon at low inflows. The average air velocity in the street canyon could be reduced significantly when the top of the tree canopy is near the top of the street canyon. The air velocity and pollutant concentration in the street canyon would vary only slightly due to the canopy porosity. Due to the increasing canopy porosity, the air velocity would increase, and the pollutant concentration would be reduced. The leaves are non-continuous and uniformly distributed at constant porosity, which does not significantly change the velocity distribution and pollutant concentration in the street canyon.

Funder

Key Laboratory of Ocean Energy Utilization and Energy Conservation (Dalian University of Technology), Ministry of Eduction

State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, CAS

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3