Medial Knee Injury: Part 1, Static Function of the Individual Components of the Main Medial Knee Structures

Author:

Griffith Chad J.1,LaPrade Robert F.1,Johansen Steinar2,Armitage Bryan1,Wijdicks Coen1,Engebretsen Lars1

Affiliation:

1. Division of Sports Medicine, Department of Orthopaedic Surgery, University of Minnesota, Minneapolis, Minnesota

2. Orthopaedic Center, Ullevaal University Hospital, and Faculty of Medicine, University of Oslo, Oslo, Norway

Abstract

Background There is a lack of knowledge on the primary and secondary static stabilizing functions of the posterior oblique ligament (POL), the proximal and distal divisions of the superficial medial collateral ligament (sMCL), and the meniscofemoral and meniscotibial portions of the deep medial collateral ligament (MCL). Hypothesis Identification of the primary and secondary stabilizing functions of the individual components of the main medial knee structures will provide increased knowledge of the medial knee ligamentous stability. Study Design Descriptive laboratory study. Methods Twenty-four cadaveric knees were equally divided into 3 groups with unique sequential sectioning sequences of the POL, sMCL (proximal and distal divisions), and deep MCL (meniscofemoral and meniscotibial portions). A 6 degree of freedom electromagnetic tracking system monitored motion after application of valgus loads (10 N·m) and internal and external rotation torques (5 N·m) at 0°, 20°, 30°, 60°, and 90° of knee flexion. Results The primary valgus stabilizer was the proximal division of the sMCL. The primary external rotation stabilizer was the distal division of the sMCL at 30° of knee flexion. The primary internal rotation stabilizers were the POL and the distal division of the sMCL at all tested knee flexion angles, the meniscofemoral portion of the deep MCL at 20°, 60°, and 90° of knee flexion, and the meniscotibial portion of the deep MCL at 0° and 30° of knee flexion. Conclusion An intricate relationship exists among the main medial knee structures and their individual components for static function to applied loads. Clinical Significance: Interpretation of clinical knee motion testing following medial knee injuries will improve with the information in this study. Significant increases in external rotation at 30° of knee flexion were found with all medial knee structures sectioned, which indicates that a positive dial test may be found not only for posterolateral knee injuries but also for medial knee injuries.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

Cited by 230 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3