Synthetic PVA Osteochondral Implants for the Knee Joint: Mechanical Characteristics During Simulated Gait

Author:

Chen Tony12,Brial Caroline1,McCarthy Moira3,Warren Russell F.23,Maher Suzanne A.12

Affiliation:

1. Department of Biomechanics, Hospital for Special Surgery, New York, New York, USA

2. Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA

3. Sports Medicine and Shoulder Service, Hospital for Special Surgery, New York, New York, USA

Abstract

Background: Although polyvinyl alcohol (PVA) implants have been developed and used for the treatment of femoral osteochondral defects, their effect on joint contact mechanics during gait has not been assessed. Purpose/Hypothesis: The purpose was to quantify the contact mechanics during simulated gait of focal osteochondral femoral defects and synthetic PVA implants (10% and 20% by volume of PVA), with and without porous titanium (pTi) bases. It was hypothesized that PVA implants with a higher polymer content (and thus a higher modulus) combined with a pTi base would significantly improve defect-related knee joint contact mechanics. Study Design: Controlled laboratory study. Methods: Four cylindrical implants were manufactured: 10% PVA, 20% PVA, and 10% and 20% PVA disks mounted on a pTi base. Devices were implanted into 8 mm–diameter osteochondral defects created on the medial femoral condyles of 7 human cadaveric knees. Knees underwent simulated gait and contact stresses across the tibial plateau were recorded. Contact area, peak contact stress, the sum of stress in 3 regions of interest across the tibial plateau, and the distribution of stresses, as quantified by tracking the weighted center of contact stress throughout gait, were computed for all conditions. Results: An osteochondral defect caused a redistribution of contact stress across the plateau during simulated gait. Solid PVA implants did not improve contact mechanics, while the addition of a porous metal base led to significantly improved joint contact mechanics. Implants consisting of a 20% PVA disk mounted on a pTi base significantly improved the majority of contact mechanics parameters relative to the empty defect condition. Conclusion: The information obtained using our cadaveric test system demonstrated the mechanical consequences of femoral focal osteochondral defects and provides biomechanical support to further pursue the efficacy of high-polymer-content PVA disks attached to a pTi base to improve contact mechanics. Clinical Relevance: As a range of solutions are explored for the treatment of osteochondral defects, our preclinical cadaveric testing model provides unique biomechanical evidence for the continued investigation of novel solutions for osteochondral defects.

Funder

National Institute of Arthritis and Musculoskeletal and Skin Diseases

Weill Cornell Medical College

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3