Changes in dynamic medial tibiofemoral contact mechanics and kinematics after injury of the anterior cruciate ligament: A cadaveric model

Author:

Bedi Asheesh12,Chen Tony2,Santner Thomas J3,El-Amin Saadiq2,Kelly Natalie H2,Warren Russell F2,Maher Suzanne A2

Affiliation:

1. MedSport, University of Michigan Health System, Ann Arbor, MI, USA

2. Department of Biomechanics, Hospital for Special Surgery, New York, NY, USA

3. Department of Statistics, The Ohio State University, Columbus, OH, USA

Abstract

The effects of tears of the anterior cruciate ligament on knee kinematics and contact mechanics during dynamic everyday activities, such as gait, remains unclear. The objective of this study was to characterize anterior cruciate ligament–deficient knee contact mechanics and kinematics during simulated gait. Nine human cadaveric knees were each augmented with a sensor capable of measuring dynamic normal contact stresses on the tibial plateau, mounted on a load-controlled simulator, and subjected to physiological, multidirectional, dynamic loads to mimic gait. Using a mixed model with random knee identifiers, confidence intervals were constructed for contact stress before and after anterior cruciate ligament transection at two points in the gait cycle at which axial force peaked (14% and 45% of the gait cycle). Kinematic and contact mechanics changes after anterior cruciate ligament transection were highly variable across knees. Nonetheless, a statistically significant increase in contact stress in the posterior–central aspect of the medial tibial plateau at 45% of the gait cycle was identified, the location of which corresponds to the location of degenerative changes that are frequently found in patients with chronic anterior cruciate ligament injury. The variability in the contact stress in other regions of the medial plateau at 45% of the gait cycle was partly explained by the variations in osseous geometry across the nine knees tested. At 14% of gait, there was no significant change in peak contact stress after anterior cruciate ligament transection in any of the four quadrants, and none of the possible explanatory variables showed statistical significance. Understanding the variable effect of anterior cruciate ligament injury on contact mechanics based on geometric differences in osseous anatomy is of paramount clinical importance and may be invaluable to select the best reconstruction techniques and counsel patients on their individual risk of subsequent chondral degeneration.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3