Human Subacromial Bursal Cells Display Superior Engraftment Versus Bone Marrow Stromal Cells in Murine Tendon Repair

Author:

Dyrna Felix1,Zakko Philip2,Pauzenberger Leo3,McCarthy Mary Beth2,Mazzocca Augustus D.2,Dyment Nathaniel A.4

Affiliation:

1. Department of Orthopaedic Sports Medicine, Technical University, Munich, Germany

2. Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA

3. St Vincent Shoulder and Sports Clinic, Vienna, Austria

4. Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA

Abstract

Background: Bone marrow aspirate is a primary source for cell-based therapies with increasing value in the world of orthopaedic surgery, especially in revision cases of tendon and ligament repairs. However, cells within peritendinous structures, such as the paratenon and surrounding bursa, contribute to the native tendon-healing response and offer promising cell populations for cell-based repair strategies. Therefore, the purpose of this study is to investigate the efficacy of cells derived from human subacromial bursa as compared with the current gold standard, bone marrow stromal cells (BMSCs), for tendon repairs in an established in vivo immunodeficient murine patellar tendon defect model. Hypothesis: Subacromial bursal cells will show superior survival and engraftment into the host tissue as compared with BMSCs. Study Design: Controlled laboratory study. Methods: Human subacromial bursal and bone marrow aspirate were harvested from the same donor undergoing rotator cuff repair. Cells were transfected with a fluorescent lentiviral vector to permanently label the cells, encapsulated into fibrin gel, and implanted into bilateral full-length central-width patellar tendon defects of immunodeficient mice. Additional surgery was performed on control mice comparing fibrin without cells and natural healing. At the time of sacrifice, all limbs were scanned on a multiphoton microscope to monitor the engraftment of the human donor cells. Afterward, limbs were assigned to either immunohistochemical or biomechanical analysis. Results: As compared with BMSCs, implanted subacromial bursal cells displayed superior tissue engraftment and survival. The main healing response in this defect model was the creation of new healing tissue over the anterior surface of the defect space. The implantation of cells significantly increased the thickness of the anterior healing tissue as compared with control limbs that did not receive cells. Cell proliferation was also increased in limbs that received implanted cells, suggesting that the donor cells stimulated a more robust healing response. Finally, these changes in the healing response did not lead to significant changes in mechanical properties. Conclusion: The subacromial bursa, while often removed during rotator cuff repair, may harbor a more suitable cell source for tendon repair than BMSCs, as bursal cells display superior engraftment and survival in tendon tissue. In addition, the subacromial bursa may be a more accessible cell source than bone marrow aspirate. Clinical Relevance: The subacromial bursa contains a cell population that responds to tendon injury and may provide a more optimal cell source for tendon repair and regeneration strategies. Therefore, cells could be harvested from this tissue in the future, as opposed to the current practice of bursectomy and debridement.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3