Altered Walking and Muscle Patterns Reduce Hip Contact Forces in Individuals With Symptomatic Cam Femoroacetabular Impingement

Author:

Ng K.C. Geoffrey12,Mantovani Giulia23,Modenese Luca4,Beaulé Paul E.5,Lamontagne Mario2356

Affiliation:

1. Department of Mechanical Engineering, Imperial College London, London, UK

2. Human Movement Biomechanics Laboratory, University of Ottawa, Ottawa, Ontario, Canada

3. School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada

4. Department of Civil and Environmental Engineering, Imperial College London, London, UK

5. Division of Orthopaedic Surgery, University of Ottawa, Ottawa, Ontario, Canada

6. Department of Mechanical Engineering, University of Ottawa, Ottawa, Ontario, Canada

Abstract

Background: Cam-type femoroacetabular impingement (FAI) is a causative factor for hip pain and early hip osteoarthritis. Although cam FAI can alter hip joint biomechanics, it is unclear what role muscle forces play and how they affect the hip joint loading. Purpose/Hypothesis: The purpose was to examine the muscle contributions and hip contact forces in individuals with symptomatic cam FAI during level walking. Patients with symptomatic cam FAI would demonstrate different muscle and hip contact forces during gait. Study Design: Controlled laboratory study. Methods: Eighteen patients with symptomatic cam FAI were matched for age and body mass index with 18 control participants. Each participant’s walking kinematics and kinetics were recorded throughout a gait cycle (ipsilateral foot-strike to ipsilateral foot-off) by use of a motion capture system and force plates. Muscle and hip contact forces were subsequently computed by use of a musculoskeletal modeling program and static optimization methods. Results: The FAI group walked slower and with shorter steps, demonstrating reduced joint motions and moments during contralateral foot-strike, compared with the control group. The FAI group showed reduced psoas major (median, 1.1 newtons per bodyweight [N/BW]; interquartile range [IQR], 1.0-1.5 N/BW) and iliacus forces (median, 1.2 N/BW; IQR, 1.0-1.6 N/BW), during contralateral foot-strike, compared with the control group (median, 1.6 N/BW; IQR, 1.3-1.6 N/BW, P = .004; and median, 1.5 N/BW; IQR, 1.3-1.6 N/BW, P = .03, respectively), which resulted in lower hip contact forces in the anterior ( P = .026), superior ( P = .02), and medial directions ( P = .038). The 3 vectors produced a resultant peak force at the anterosuperior aspect of the acetabulum for both groups, with the FAI group demonstrating a substantially lower magnitude. Conclusion: FAI participants altered their walking kinematics and kinetics, especially during contralateral foot-strike, as a protective mechanism, which resulted in reduced psoas major and iliacus muscle force and anterosuperior hip contact force estimations. Clinical Relevance: Limited hip mobility not only is attributed to bone-on-bone impingement, caused by cam morphology, but could be attributed to musculature as well. Not only would the psoas major and iliacus be able to protect the hip joint during flexion-extension, athletic conditioning could further strengthen core muscles for improved hip mobility and pelvic balance.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3