Human Muscle–Derived Cells Are Capable of Tenogenic Differentiation and Contribution to Tendon Repair

Author:

Shao Xiexiang1,Lin Xingzuan1,Zhu Siyuan1,Zhou Hao1,Lu Zhenfei2,Zhang Yuanyuan3,Wang Jianhua1

Affiliation:

1. Department of Orthopaedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China

2. Department of Sports Medicine, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, China

3. Centre Testing International Medical Laboratory, Shanghai, China

Abstract

Background: It has been reported that the harvested hamstring tendon for autograft could be regenerated with well-oriented fibers and uniformly distributed spindle-shaped cells after removal. However, which cell type might participate in the repair process remains unknown. Purpose: To investigate the tenogenic differentiation potential of human muscle–derived cells (MDCs) both in vitro and in vivo. Study Design: Controlled laboratory study. Methods: Primary human MDCs and tenocytes were isolated from discarded materials during a peroneus longus tendon–harvesting procedure. Expression of tenogenic genes were evaluated and compared among MDCs, MDCs with tenogenic induction, and tenocytes. RNA sequencing was performed to evaluate the expression profile of differentiated MDCs. Human MDCs were implanted in a tendon injury model to investigate the in vivo tenogenic differentiation potential. Histologic and functional analyses were performed to evaluate the function of MDCs for tendon repair. Results: The relative expression levels (in fold change) of tenogenic genes Col I, MKX, SCX, THBS4, and TNC in MDCs were significantly upregulated 11.5 ± 1.3, 957.1 ± 63.7, 19.1 ± 2.8, 61.9 ± 4.8, and 10.2 ± 2.8 after tenogenic induction, respectively. The expression profile of tenogenically differentiated MDCs was much closer to primary tenocytes. Activation of TGF-β/Smad3 signaling significantly promoted the tenogenic differentiation ability of MDCs. Transplanted human MDCs were identified in regenerated tendon and expressed tenogenic genes. As for biomechanical properties, the failure loads in the Matrigel, transplantation, and uninjured groups were 7.2 ± 0.5, 11.6 ± 0.3, and 13.9 ± 0.7 N, while the stiffness values were 4.4 ± 1.3 × 103, 7.6 ± 0.8 × 103, and 10.9 ± 1.1 × 103 N/m. Plantarflexion force, histologic morphology, and motor function were also significantly improved after MDC transplantation in a tendon injury model. Conclusion: There exist cells with tenogenic differentiation potential in human skeletal muscles. Activation of TGF-β/Smad3 signaling plays an important role in tenogenic differentiation for human MDCs. Human MDCs contribute to structural and functional repair for the injured tendon. MDCs are a potential cell source to participate in the repair process after tendon injury. Clinical Relevance: The MDCs could be a promising cell source to repair tendon injury.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3