Football Playing Surface and Shoe Design Affect Rotational Traction

Author:

Villwock Mark R.1,Meyer Eric G.1,Powell John W.2,Fouty Amy J.3,Haut Roger C.1

Affiliation:

1. Orthopaedic Biomechanics Laboratories, College of Osteopathic Medicine, Michigan State University, East Lansing

2. Department of Kinesiology, Michigan State University, East Lansing

3. Department of Intercollegiate Athletics, Michigan State University, East Lansing

Abstract

Background High rotational traction between football shoes and the playing surface may be a potential mechanism of injury for the lower extremity. Hypothesis Rotational traction at the shoe-surface interface depends on shoe design and surface type. Study Design Controlled laboratory study. Methods A mobile testing apparatus with a compliant ankle was used to apply rotations and measure the torque at the shoe-surface interface. The mechanical surrogate was used to compare 5 football cleat patterns (total of 10 shoe models) and 4 football surfaces (FieldTurf, AstroPlay, and 2 natural grass systems) on site at actual surface installations. Results Both artificial surfaces yielded significantly higher peak torque and rotational stiffness than the natural grass surfaces. The only cleat pattern that produced a peak torque significantly different than all others was the turf-style cleat, and it yielded the lowest torque. The model of shoe had a significant effect on rotational stiffness. Conclusion The infill artificial surfaces in this study exhibited greater rotational traction characteristics than natural grass. The cleat pattern did not predetermine a shoe's peak torque or rotational stiffness. A potential shoe design factor that may influence rotational stiffness is the material(s) used to construct the shoe's upper. Clinical Relevance The study provides data on the rotational traction of shoe-surface interfaces currently employed in football. As football shoe and surface designs continue to be updated, new evaluations of their performance must be assessed under simulated loading conditions to ensure that player performance needs are met while minimizing injury risk.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

Cited by 105 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3