Primary Fixation and Cyclic Performance of Single-Stitch All-Inside and Inside-Out Meniscal Devices for Repairing Vertical Longitudinal Meniscal Tears

Author:

Bachmaier Samuel1,Krych Aaron J.2ORCID,Smith Patrick A.3,Herbort Mirco4,Ritter Daniel1,LaPrade Robert F.5,Wijdicks Coen A.1

Affiliation:

1. Department of Orthopedic Research, Arthrex, Munich, Germany

2. Department of Orthopedic Surgery and Sports Medicine Center, Mayo Clinic, Rochester, Minnesota, USA

3. Columbia Orthopaedic Group, Columbia, Missouri, USA

4. OCM Clinic, Munich, Germany

5. Twin Cities Orthopedics, Edina, Minnesota, USA

Abstract

Background: Primary device fixation and the resistance against gap formation during repetitive loading influence the quality of meniscal repair. There are limited biomechanical data comparing primary tensioning and cyclic behavior of all-inside versus inside-out repair. Hypothesis: All-inside devices provide higher initial load on the meniscal repair than inside-out fixation, and stiffer constructs show higher resistance against gap formation during cyclic loading. Study Design: Controlled laboratory study. Methods: In total, 60 longitudinal bucket-handle tears in human cadaveric menisci were created and repaired with a single stitch and randomly assigned to 4 all-inside groups (TrueSpan, FastFix 360, Stryker AIR, FiberStich) and 2 inside-out groups (suture repair [IO-S], suture tape [IO-ST]). Residual load after repair tensioning (50 N) and relief displacement were measured. Constructs underwent cyclic loading between 2 and 20 N over 500 cycles (0.75 Hz) with cyclic stiffness, gap formation, and final peak elongation measured. Ultimate load and stiffness were analyzed during pull to failure (3.15 mm/s). Results: All-inside repair demonstrated significantly higher primary fixation strength than inside-out repair. The significantly highest load (mean ± SD; 20.1 ± 0.9 N; P < .037) and relief displacement (–2.40 ± 0.32 mm; P < .03) were for the knotless soft anchoring FiberStich group. The lowest initial load (9.0 ± 1.5 N; P < .001) and relief displacement (–1.39 ± 0.26 mm; P < .045) were for the IO-S repair group. The final gap formation (500th cycle) of FiberStich (0.75 ± 0.37 mm; P < .02) was significantly smaller than others and that of the IO-S (1.47 ± 0.33 mm; P < .045) significantly larger. The construct stiffness of the FiberStich and IO-ST groups was significantly greater at the end of cyclic testing (16.7 ± 0.80 and 15.5 ± 1.42 N/mm; P < .042, respectively) and ultimate failure testing (23.4 ± 3.6 and 20.6 ± 2.3 N/mm; P < .005). The FastFix 360 (86.4 ± 4.8 N) and Stryker AIR (84.4 ± 4.6 N) groups failed at a significantly lower load than the IO-S group ( P < .02) with loss of anchor support. The FiberStich (146.8 ± 23.4 N), TrueSpan (142.0 ± 17.8 N), and IO-ST (139.4 ± 7.3 N) groups failed at significantly higher loads ( P < .02) due to suture tearing. Conclusion: Overall, primary fixation strength of inside-out meniscal repair was significantly lower than all-inside repair in this cadaveric tissue model. Although absolute differences among groups were small, meniscal repairs with higher construct stiffness (IO-ST, FiberStich) demonstrated increased resistance against gap formation and failure load. Clinical Relevance: Knotless single-stitch all-inside meniscal repair with a soft anchor resulted in less gapping, but the overall clinical significance on healing rates remains unclear.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3