An Autograft for Anterior Cruciate Ligament Reconstruction Results in Better Biomechanical Performance and Tendon-Bone Incorporation Than Does a Hybrid Graft in a Rat Model

Author:

Wang Hong-De1234,Wang Tian-Rui12345,Sui Yao46,Wang Juan123,Chen Wei123,Zhang Ying-Ze1237

Affiliation:

1. Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China

2. Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, China

3. NHC Key Laboratory of Intelligent Orthopaedic Equipment, Third Hospital of Hebei Medical University, Shijiazhuang, China

4. Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China

5. Department of Orthopaedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China

6. Department of Ophthalmology, Second Hospital of Hebei Medical University, Shijiazhuang, China

7. Chinese Academy of Engineering, Beijing, China

Abstract

Background: The biomechanical and tendon-bone incorporation properties of allograft-augmented hybrid grafts for anterior cruciate ligament (ACL) reconstruction compared with traditional autografts are unknown. Hypothesis: Using an autograft for ACL reconstruction yields better results on biomechanical testing, radiographic analysis, and histological evaluation versus using a hybrid graft. Study Design: Controlled laboratory study. Methods: A total of 66 adult male Sprague Dawley rats underwent unilateral ACL reconstruction with an autograft (AT group; n = 33) or a hybrid graft (HB group; n = 33). The grafts used in both groups were harvested from the peroneus longus tendon and were fixed by suturing to the surrounding periosteum. Samples were harvested for biomechanical testing, micro–computed tomography (CT), and histological evaluation at 4, 8, and 12 weeks postoperatively. Bone tunnels on the femoral and tibial sides were divided into 3 subregions: intra-articular (IA), midtunnel (MT), and extra-articular (EA). A cylinder-like volume of interest in the bone tunnel and a tubular-like volume of interest around the bone tunnel were used to evaluate new bone formation and bone remodeling, respectively, via micro-CT. Results: In the AT group, there were significantly higher failure loads and stiffness at 8 weeks (failure load: 3.04 ± 0.40 vs 2.09 ± 0.54 N, respectively; P = .006) (stiffness: 3.43 ± 0.56 vs 1.75 ± 0.52 N/mm, respectively; P < .001) and 12 weeks (failure load: 9.10 ± 1.13 vs 7.14 ± 0.94 N, respectively; P = .008) (stiffness: 4.45 ± 0.75 vs 3.36 ± 0.29 N/mm, respectively; P = .008) than in the HB group. With regard to new bone formation in the bone tunnel, in the AT group, the bone volume/total volume (BV/TV) was significantly higher than in the HB group on the tibial side at 8 weeks (IA: 22.21 ± 4.98 vs 5.16 ± 3.98, respectively; P < .001) (EA: 19.66 ± 7.19 vs 10.85 ± 2.16, respectively; P = .030) and 12 weeks (IA: 30.50 ± 5.04 vs 17.11 ± 7.31, respectively; P = .010) (MT: 21.15 ± 2.58 vs 15.55 ± 4.48, respectively; P = .041) (EA: 20.75 ± 3.87 vs 10.64 ± 3.94, respectively; P = .003). With regard to bone remodeling around the tunnel, the BV/TV was also significantly higher on the tibial side at 8 weeks (MT: 33.17 ± 8.05 vs 15.21 ± 7.60, respectively; P = .007) (EA: 25.19 ± 6.38 vs 13.94 ± 7.10, respectively; P = .030) and 12 weeks (IA: 69.46 ± 4.45 vs 47.80 ± 6.16, respectively; P < .001) (MT: 33.15 ± 3.88 vs 13.76 ± 4.07, respectively; P < .001) in the AT group than in the HB group. Sharpey-like fibers had formed at 8 weeks in the AT group. A large number of fibroblasts withdrew at 12 weeks. In the AT group, the width of the interface was significantly narrower at 4 weeks (85.86 ± 17.49 vs 182.97 ± 14.35 μm, respectively; P < .001), 8 weeks (58.86 ± 10.99 vs 90.15 ± 11.53 μm, respectively; P = .002), and 12 weeks (42.70 ± 7.96 vs 67.29 ± 6.55 μm, respectively; P = .001) than in the HB group. Conclusion: Using an autograft for ACL reconstruction may result in improved biomechanical properties and tendon-bone incorporation compared with a hybrid graft. Clinical Relevance: Augmenting small autografts with allograft tissue may result in decreased biomechanical performance and worse tendon-bone incorporation, increasing the risk of graft failure.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3