Author:
Tong Kai,Wei Jian,Liu Zilin,Yang Xiaoming,Hu Yong
Abstract
Abstract
Background
The present study aimed to explore the time of maximum bacterial load and main colonization knee site in bacterial infection process based on a novel rat model of septic arthritis (SA) after anterior cruciate ligament reconstruction (ACLR).
Methods
Ninety-five Wistar rats with unilateral ACLR, random enrolled into control surgery (CS) group; joint inject (JI) group; presoaking (PS) group, were injected with 30 μl sterile saline or 30 μl × 107 colony forming units/ml Staphylococcus aureus via the knee joint or graft with presoaked Staphylococcus aureus during ACLR, respectively. At 1, 4, 7, 11, and 14 days postoperatively, samples were harvested to evaluate progress of knee joint infection by postoperative body weight, body temperature, knee temperature, knee width, scales of tissue damage, serum inflammatory markers, microbiological counting, microcomputed tomography (Micro-CT), digital radiography, magnetic resonance imaging (MRI) examination, and scanning electron microscopy (SEM).
Results
No systemic infection was observed in all rats. Comparing with serum inflammatory markers, tissue scores of inflammatory reactions, bacterial counts in the CS group, these data were significantly elevated in the JI group and PS group. The bone mass around the bone tunnel was lower and the soft tissue of knee showed more obvious swelling on MRI in the infection groups than that in the CS group at 7 and 14 days postoperatively. Staphylococcus aureus clusters on the surface of screw and graft were observed in the infection group. The whole colony forming units of Staphylococcus aureus maintained a continuous upward trend peaking 7 and 11 days followed by a balanced curve in the infection groups. Bone and soft tissue were found to have more bacterial counts than graft and screws.
Conclusion
This animal model effectively mimics the acute knee infection after ACLR. We found that the bacterial colonization exhibited the peak of acute infection between 7 and 11 days postoperatively, with the major bacteria loads found in the bone, soft tissue.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Orthopedics and Sports Medicine,Surgery