Biomechanical Analysis of Articular-Sided Partial-Thickness Rotator Cuff Tear and Repair

Author:

Mihata Teruhisa1234,McGarry Michelle H.1,Ishihara Yoko15,Bui Christopher N.H.1,Alavekios Damon1,Neo Masashi2,Lee Thay Q.16

Affiliation:

1. Orthopaedic Biomechanics Laboratory, Long Beach VA Healthcare System, Long Beach, California, USA

2. Department of Orthopedic Surgery, Osaka Medical College, Takatsuki, Japan

3. Katsuragi Hospital, Kishiwada, Japan

4. Daiichi Towakai Hospital, Takatsuki, Japan

5. Department of Orthopedic Surgery, Tamanagayama Hospital, Nippon Medical School, Tokyo, Japan

6. University of California at Irvine, Irvine, California, USA

Abstract

Background: Articular-sided partial-thickness rotator cuff tears are common injuries in throwing athletes. The superior shoulder capsule beneath the supraspinatus and infraspinatus tendons works as a stabilizer of the glenohumeral joint. Purpose: To assess the effect of articular-sided partial-thickness rotator cuff tear and repair on shoulder biomechanics. The hypothesis was that shoulder laxity might be changed because of superior capsular plication in transtendon repair of articular-sided partial-thickness rotator cuff tears. Study Design: Controlled laboratory study. Methods: Nine fresh-frozen cadaveric shoulders were tested by using a custom shoulder-testing system at the simulated late-cocking phase and acceleration phase of throwing motion. Maximum glenohumeral external rotation angle, anterior translation, position of the humeral head apex with respect to the glenoid, internal impingement area, and glenohumeral and subacromial contact pressures were measured. Each specimen underwent 3 stages of testing: stage 1, with the intact shoulder; stage 2, after creation of articular-sided partial-thickness tears of the supraspinatus and infraspinatus tendons; and stage 3, after transtendon repair of the torn tendons by using 2 suture anchors. Results: Articular-sided partial-thickness tears did not significantly change any of the shoulder biomechanical measurements. In the simulated late-cocking phase, transtendon rotator cuff repair resulted in decreased maximum external rotation angle by 4.2° ( P = .03), posterior shift of the humeral head (1.1-mm shift; P = .02), decreased glenohumeral contact pressure by 1.7 MPa (56%; P = .004), and decreased internal impingement area by 26.4 mm2 (65%; P < .001) compared with values in the torn shoulder. In the acceleration phase, the humeral head shifted inferiorly (1.2-mm shift; P = .03 vs torn shoulder), and glenohumeral anterior translation (1.5-mm decrease; P = .03 vs torn shoulder) and subacromial contact pressure (32% decrease; P = .004 vs intact shoulder) decreased significantly after transtendon repair. Conclusion: Transtendon repair of articular-sided partial-thickness supraspinatus and infraspinatus tears decreased glenohumeral and subacromial contact pressures at time zero; these changes might lead to reduced secondary subacromial and internal impingements and consequently progression to full-thickness rotator cuff tear. However, repair of the tendons decreased anterior translation and external rotation and changed the positional relationship between the humeral head and the glenoid. Clinical Relevance: Careful attention should be paid to shoulder laxity and range of motion when transtendon repair is chosen to treat articular-sided partial-thickness rotator cuff tears, specifically in throwing athletes.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3