Effect of intraarticular pressure on glenohumeral kinematics during a simulated abduction motion: a cadaveric study

Author:

Williamson Patrick M.,Momenzadeh Kaveh,Hanna Philip,Abbasian Mohammadreza,Kheir Nadim,Lechtig Aron,Okajima Stephen,Garcia Mason,Ramappa Arun J.,Nazarian Ara,DeAngelis Joseph P.

Abstract

Abstract Background The current understanding of glenohumeral joint stability is defined by active restrictions and passive stabilizers including naturally-occurring negative intraarticular pressure. Cadaveric specimens have been used to evaluate the role of intraarticular pressure on joint stability, although, while the shoulder’s negative intraarticular pressure is universally acknowledged, it has been inconsistently accounted for. Hypothesis During continuous, passive humeral abduction, releasing the native intraarticular pressure increases joint translation, and restoring this pressure decreases joint translations. Study design Descriptive Laboratory Study. Methods A validated shoulder testing system was used to passively abduct the humerus in the scapular plane and measure joint translations for seven (n = 7) cadaveric specimens. The pressure within the glenohumeral joint was measured via a 25-gauge needle during passive abduction of the arm, which was released and subsequently restored. During motion, the rotator cuff muscles were loaded using stepper motors in a force feedback loop and electromagnetic sensors were used to continuously measure the position of the humerus and scapula. Joint translation was defined according to the instant center of rotation of the glenohumeral head according to the recommendations by the International Society of Biomechanics. Results Area under the translation versus abduction angle curve suggests that releasing the pressure within the capsule results in significantly less posterior translation of the glenohumeral head as compared to intact (85–90˚, p < 0.05). Posterior and superior translations were reduced after 70˚ of abduction when the pressure within the joint was restored. Conclusion With our testing system employing a smooth continuous passive motion, we were able to show that releasing intraarticular pressure does not have a major effect on the path of humeral head motion during glenohumeral abduction. However, both violating the capsule and restoring intraarticular pressure after releasing alter glenohumeral translations. Future studies should study the effect of simultaneous external rotation and abduction on the relationship between joint motion and IAP, especially in higher degrees of abduction. Clinical relevance Thoroughly simulating the glenohumeral joint environment in the cadaveric setting may strengthen the conclusions that can be translated from this setting to the clinic.

Funder

National Institutes of Health,United States

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3