Development and Validation of the Artificial Intelligence Learning Intention Scale (AILIS) for University Students

Author:

Chai Ching Sing1,Yu Ding2ORCID,King Ronnel B.1,Zhou Ying2ORCID

Affiliation:

1. The Chinese University of Hong Kong, China

2. Beijing Normal University, China

Abstract

As artificial intelligence (AI) permeates almost all aspects of our lives, university students need to acquire relevant knowledge, skills, and attitudes to adapt to the challenges it poses. This study reports the development and validation of a scale called the Artificial Intelligence Learning Intention Scale (AILIS). AILIS was designed to measure the different factors that shape university students’ behavioral intentions to learn about AI and their AI learning. We recruited 907 Chinese university students who answered the survey. The scale is comprised of 9 factors that are categorized into various dimensions pertaining to epistemic capacity (AI basic knowledge, programming efficacy, designing AI for social good), facilitating environments (actual use of AI systems, subjective norms, access to support and technology), psychological attitudes (resilience, optimism, personal relevance), and focal outcomes (behavioral intention to learn AI, actual learning of AI). Reliability analyses and confirmatory factor analyses indicated that the scale has acceptable reliability and construct validity. Structural equational modeling results demonstrated the critical role played by epistemic capacity, facilitating environments, and psychological attitudes in promoting students’ behavioral intentions and actual learning of AI. Overall, the findings revealed that university students express a strong intention to learn about AI, and this behavioral intention is positively associated with actual learning. The study contextualizes the theory of planned behavior for university AI education, provides guidelines on the design of AI curriculum courses, and proposes a possible tool to evaluate university AI curriculum.

Funder

Beijing Social Science Foundation Project

Publisher

SAGE Publications

Reference83 articles.

1. The theory of planned behavior

2. The theory of planned behavior: Frequently asked questions

3. Alsheibani S., Cheung Y., Messom C. (2018). Artificial intelligence adoption: AI-readiness at firm-level. PACIS 2018 Proceedings, 37. https://aisel.aisnet.org/pacis2018/37

4. Relation Between Programming Visual Learning With VILEP and Students’ Emotions

5. Academic Resilience in Mathematics among Poor and Minority Students

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3