Affiliation:
1. Priority Research Centre for Stroke and Brain Injury, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
2. Department of Neurology, John Hunter Hospital, Newcastle, Australia
Abstract
We aimed to investigate optimal perfusion thresholds defining ischemic core and penumbra for hemispheric-cortical gray matter (GM) and subcortical white matter (WM). A total of 65 sub-6 h ischemic stroke patients were assessed, who underwent acute computed tomography perfusion (CTP) and acute magnetic resonance imaging. CTP maps were generated by both standard singular value deconvolution (sSVD) and SVD with delay and dispersion correction (ddSVD). Analyses were undertaken to calculate sensitivity, specificity, and area under the curve (AUC) for each CTP threshold for core and penumbra in GM and WM. With sSVD, the core was best defined in GM by cerebral blood flow (CBF) < 30% (AUC: 0.73) and in WM by CBF < 20% (AUC: 0.67). With ddSVD, GM core was best defined by CBF < 35% (AUC: 0.75) and in WM by CBF < 25% (AUC: 0.68). A combined GM/WM threshold overestimated core compared to diffusion-weighted imaging, CBF < 25% from sSVD (1.88 ml, P = 0.007) and CBF < 30% from ddSVD (1.27 ml, P = 0.011). The perfusion lesion was best defined by Tmax > 5 s (AUC: 0.80) in GM and Tmax > 7 s (AUC: 0.75) in WM. With sSVD, a delay time (DT) > 3 s from ddSVD was the optimal for both GM (AUC: 0.78) and WM (AUC: 0.75). Using tissue-specific thresholds for GM/WM provides more accurate estimation of acute ischemic core.
Subject
Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献