Quantification of cerebral blood flow in adults by contrast-enhanced near-infrared spectroscopy: Validation against MRI

Author:

Milej Daniel12ORCID,He Lian3,Abdalmalak Androu12,Baker Wesley B4ORCID,Anazodo Udunna C12,Diop Mamadou12,Dolui Sudipto5,Kavuri Venkaiah C3,Pavlosky William2,Wang Lin3,Balu Ramani5,Detre John A5,Amendolia Olivia6,Quattrone Francis6,Kofke W Andrew46,Yodh Arjun G3,St Lawrence Keith12

Affiliation:

1. Department of Medical Biophysics, Western University, London, ON, Canada

2. Imaging Division, Lawson Health Research Institute, London, ON, Canada

3. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA

4. Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA

5. Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA

6. Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA

Abstract

The purpose of this study was to assess the accuracy of absolute cerebral blood flow (CBF) measurements obtained by dynamic contrast-enhanced (DCE) near-infrared spectroscopy (NIRS) using indocyanine green as a perfusion contrast agent. For validation, CBF was measured independently using the MRI perfusion method arterial spin labeling (ASL). Data were acquired at two sites and under two flow conditions (normocapnia and hypercapnia). Depth sensitivity was enhanced using time-resolved detection, which was demonstrated in a separate set of experiments using a tourniquet to temporally impede scalp blood flow. A strong correlation between CBF measurements from ASL and DCE-NIRS was observed (slope = 0.99 ± 0.08, y-intercept = −1.7 ± 7.4 mL/100 g/min, and R2 = 0.88). Mean difference between the two techniques was 1.9 mL/100 g/min (95% confidence interval ranged from −15 to 19 mL/100g/min and the mean ASL CBF was 75.4 mL/100 g/min). Error analysis showed that structural information and baseline absorption coefficient were needed for optimal CBF reconstruction with DCE-NIRS. This study demonstrated that DCE-NIRS is sensitive to blood flow in the adult brain and can provide accurate CBF measurements with the appropriate modeling techniques.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3