Nanokaolin reinforced carboxylated nitrile butadiene rubber/polyurethane blend-based latex with enhanced tensile properties and chemical resistance

Author:

Aung QL1,Chow WS1ORCID,Yong YP2,Lam CN2

Affiliation:

1. School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Malaysia

2. Accurativ (M) Sdn Bhd, Kawasan Industri Hi-Tech, Sungai Kapar Indah, Kapar, Selangor, Malaysia

Abstract

The demand for gloves (e.g., disposable gloves, medical gloves) is increasing due to the Coronavirus disease 2019 (COVID-19) pandemic. Stability in the supply chain in the glove industry is important, and thus strategies are used to solve the problem of the shortage of nitrile gloves. The blending of nitrile butadiene rubber (NBR) with polyurethane (PU) and the use of the nanocomposite concept is among the feasible approaches. The present study aims to investigate the effects of nanokaolin (NK) on the tensile and chemical properties of carboxylated nitrile butadiene rubber (NBR)/polyurethane (PU) latex blends. Three different loadings of NK (10, 20, and 30 parts per hundred rubber) were added to the NBR/PU (at a blending ratio of 85/15). The zeta potential showed that all the NBR compounds exhibit good colloidal stability. The incorporation of NK increased the crosslink density and tensile strength of the NBR/PU latex blends. The highest tensile strength was achieved when the NK loading was 20 phr. All the NBR blends and nanocomposites (NBR/PU-based) possess tensile properties that fulfill the requirements for glove application. The chemical resistance of NBR compounds was increased by the incorporation of NK due to the higher crosslink density and barrier properties contributed by the NK.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Organic Chemistry,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3