Affiliation:
1. Centre for Polymer Science and Technology, Department of Chemistry, University of Calicut, Calicut University, Kerala, India
Abstract
This work insight into the structural, morphological, thermal, conductivity, dielectric and mechanical properties of chlorinated polyethylene/copper alumina (CPE/Cu-Al2O3) nanocomposites. The Fourier transform infrared spectra (FTIR) of the nanocomposites ensured the presence of Cu-Al2O3 in the polymer chains of chlorinated polyethylene. The X-ray diffractograms (XRD) clearly showed the amorphous nature of the pure polymer and the crystallinity imparted by the addition of the nanosized Cu-Al2O3 into the polymer. The surface morphology of CPE and CPE with different filler loadings was examined using a field-emission scanning electron microscope (FESEM), and the images showed the presence of hemispherical particles of nanometric size. The glass transition temperature (Tg) of the nanocomposite system was determined by differential scanning calorimetric analysis, and the Tg values showed an increase with the loading of nanoparticles. Investigation of electrical conductivity and impedance properties at room temperature with varying applied frequencies demonstrated an enhancement in electrical properties with the addition of nanoparticles. Dielectric constant and dielectric loss exhibit an increasing nature with frequency. The mechanical properties of the polymer nanocomposites, such as tensile strength, modulus, hardness, and impact resistance, were improved while their elongation at break was decreased by the addition of Cu-Al2O3. Several theoretical models were correlated with the experimental tensile strength to study the reinforcing mechanism of Cu-Al2O3 reinforced CPE.
Subject
Materials Chemistry,Polymers and Plastics,Organic Chemistry,General Chemical Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献