Effect of Cu-Al2O3 nanoparticles on the performance of chlorinated polyethylene nanocomposites

Author:

Ramesan MT1ORCID,Suvarna S1

Affiliation:

1. Centre for Polymer Science and Technology, Department of Chemistry, University of Calicut, Calicut University, Kerala, India

Abstract

This work insight into the structural, morphological, thermal, conductivity, dielectric and mechanical properties of chlorinated polyethylene/copper alumina (CPE/Cu-Al2O3) nanocomposites. The Fourier transform infrared spectra (FTIR) of the nanocomposites ensured the presence of Cu-Al2O3 in the polymer chains of chlorinated polyethylene. The X-ray diffractograms (XRD) clearly showed the amorphous nature of the pure polymer and the crystallinity imparted by the addition of the nanosized Cu-Al2O3 into the polymer. The surface morphology of CPE and CPE with different filler loadings was examined using a field-emission scanning electron microscope (FESEM), and the images showed the presence of hemispherical particles of nanometric size. The glass transition temperature (Tg) of the nanocomposite system was determined by differential scanning calorimetric analysis, and the Tg values showed an increase with the loading of nanoparticles. Investigation of electrical conductivity and impedance properties at room temperature with varying applied frequencies demonstrated an enhancement in electrical properties with the addition of nanoparticles. Dielectric constant and dielectric loss exhibit an increasing nature with frequency. The mechanical properties of the polymer nanocomposites, such as tensile strength, modulus, hardness, and impact resistance, were improved while their elongation at break was decreased by the addition of Cu-Al2O3. Several theoretical models were correlated with the experimental tensile strength to study the reinforcing mechanism of Cu-Al2O3 reinforced CPE.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Organic Chemistry,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3