In situ emulsion polymerization of poly (vinyl acetate) and asparagus racemosus biopolymer composites for flexible energy storage applications

Author:

Ramesan M. T.1ORCID,Sameela T. P.1,Meera K.1,Bahuleyan B. K.2,Verma Meenakshi3

Affiliation:

1. Centre for Polymer Science and Technology, Department of Chemistry University of Calicut Malappuram India

2. Department of General Studies Yanbu Industrial College Yanbu Kingdom of Saudi Arabia

3. University Centre for Research and Development, Department of Chemistry Chandigarh University Mohali India

Abstract

AbstractPolymer composites reinforced with synthetic materials are losing acceptability due to significant environmental concerns and high costs. Natural fillers are becoming increasingly popular due to their non‐toxicity, lightweight, low energy consumption, and environmental friendliness. In the present work, poly (vinyl acetate) (PVAc) and asparagus racemosus (AR) bio‐composites have been prepared by an in‐situ emulsion polymerization method. The composite films were subsequently examined by Fourier transform infrared spectroscopy (FT‐IR), X‐ray diffraction, atomic force microscopy (AFM), field emission scanning electron microscopy (FE‐SEM), optical microscope, differential scanning calorimeter (DSC), and thermogravimetric analysis. The formation of AR in PVAc composite was confirmed by the characteristic AR band at 3300 cm−1 in FT‐IR spectra. X‐ray diffraction studies showed a shift in the amorphous peak of PVAc/AR composites compared to pure PVAc. The AFM, FE‐SEM, and optical microscopic results revealed the uniform distribution of AR in the polymer matrix. DSC and TGA measurements showed that the glass transition temperature and thermal stability of PVAc increased with the inclusion of bio‐filler. The tensile strength, hardness, dielectric constant and AC conductivity of PVAc were observed to increases with boehmite inclusion, whereas elongation at break is reduced. As a result, environmentally friendly PVAc/AR composites with good mechanical, thermal and electrical properties could be a viable green substitute for energy storage, flexible electronic, and other electrochemical devices.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3