Comparative evaluation of oil resistance, dielectric properties, AC conductivity, and transport properties of nitrile rubber and chlorinated nitrile rubber

Author:

Nihmath A1,Ramesan MT1ORCID

Affiliation:

1. Department of Chemistry, University of Calicut, Thenhipalam, Kerala, India

Abstract

Nitrile rubber (NBR) has been extensively used in high oil resistance application such as in automotive seals and gaskets. Due to the poor mechanical strength of NBR, the performance of these products undergoes deterioration when it is in contact with hot oils and solvents. The aim of the present work is to investigate the molecular transport of petroleum fuels and oil through chlorinated NBR (Cl-NBR) with respect to different contents of chlorine. It also focuses on the effect of chlorine content on the alternating current (AC) conductivity and dielectric properties of Cl-NBR for flexible electronic applications. The transport characteristics of petroleum fuels through the NBR and Cl-NBR membranes have been studied by a simple sorption gravimetric analysis in the temperature range 27–50°C. The diffusion results have been explained in terms of the size of liquid molecules and the diffusion mechanism was found to follow the anomalous trend. The diffusion, sorption, solvent uptake, and permeation constants were investigated and were found to decrease with increase in the level of chlorine content in NBR matrix. The activation energy for diffusion and permeation processes were increased and reached maximum value for Cl-NBR (22% Cl content). The oil resistance property of Cl-NBR was significantly higher than pure NBR. The swelling of Cl-NBR in ASTM oil was three times lower than NBR. The electrical conductivity and dielectric properties of NBR was found to be increased with the increase in chlorine content of NBR. NBR showed the AC conductivity value of 7.24 S cm−1 at 106 Hz, while the Cl-NBR with 24% chlorine showed the conductivity value of 4.69 S cm−1. The higher AC conductivity and dielectric properties, solvent, and oil resistance of Cl-NBR than that of NBR suggests that the Cl-NBR can be used as multifunctional materials for flexible nano-electronic devices and high-performance oil-resistant applications.

Funder

Kerala State Council for Science, Technology and Environment

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Organic Chemistry,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3