Enhancing barrier properties: Practical analysis of transport of solvents and gases in natural rubber/graphene oxide‐silica core shell Hybrid Nanocomposites.

Author:

Paduvilan Jibin Keloth1ORCID,Velayudhan Prajitha1ORCID,Kalliyathan Abitha Vayyaprontavida1ORCID,Sidharthan Sisanth Krishnageham23ORCID,Meera A. P.4ORCID,Thomas Sabu1256ORCID

Affiliation:

1. School of Chemical Sciences Mahatma Gandhi University Kottayam India

2. International and Inter University Centre for Nano Science and Nanotechnology Mahatma Gandhi University Kottayam India

3. Department of Polymer Technology Government Polytechnic College Adoor India

4. Research and Post Graduate Department of Chemistry & Polymer Chemistry KSM DB College Sasthamcotta India

5. School of Energy Materials Mahatma Gandhi University Kottayam India

6. Department of Chemical Sciences University of Johannesburg Johannesburg South Africa

Abstract

AbstractThis work investigates the comprehensive exploration of transport properties in natural rubber/graphene oxide‐silica hybrid core‐shell (NR/GSC) nanocomposites, focusing on diffusion, sorption behavior, swelling parameters, and gas permeability. The study evaluates the performance of the composite membranes concerning oxygen and nitrogen gas permeability (71.3% and 68.48% reduction, respectively). The experimental results reveal the sorption behavior, swelling parameters, and transport coefficients of NR/GSC composites, providing valuable insights into the material's behavior in different environments. Among various compositions, GSC10 stands out as the optimal composition, exhibiting superior diffusion and gas permeability behavior compared to other compositions. How the filler geometry and concentration are interconnected on the transport properties is carefully dissected, offering a deeper comprehension of the correlation between filler characteristics and composite performance. The study predicts that the Peppas‐Sahlin model and Affine model for mole percentage solvent uptake and molecular mass between successive crosslinks, respectively, best fit experimental values. This work contributes to the growing knowledge in the field of nanocomposites, providing a meticulous perspective on the transport properties of NR/GSC membranes and emphasizing the superior performance of the GSC10 composition.Highlights NR/GSC hybrid nanocomposites showed reduced solvent uptake. A 71.3% reduction in oxygen and 68.48% reduction in nitrogen permeation. Theoretically modeled using Peppas‐Sahlin, Korsmeyer‐Peppas, Nielsen and s GSC nanoparticles shows excellent dispersion in NR matrix Enhanced fuel efficiency and reduced environmental footprint in tire manufacturing technology.

Funder

Rashtriya Uchchatar Shiksha Abhiyan

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3