Development of 3D boundary element method for the simulation of acoustic metamaterials/metasurfaces in mean flow for aerospace applications

Author:

Bashir Imran1ORCID,Carley Michael2

Affiliation:

1. School of Computing, Engineering & Digital Technologies, Teesside University, Middlesbrough, UK

2. Department of Mechanical Engineering, University of Bath, Bath, UK

Abstract

Low-cost airlines have significantly increased air transport, thus an increase in aviation noise. Therefore, predicting aircraft noise is an important component for designing an aircraft to reduce its impact on environmental noise along with the cost of testing and certification. The aim of this work is to develop a three-dimensional Boundary Element Method (BEM), which can predict the sound propagation and scattering over metamaterials and metasurfaces in mean flow. A methodology for the implementation of metamaterials and metasurfaces in BEM as an impedance patch is presented here. A three-dimensional BEM named as BEM3D has been developed to solve the aero-acoustics problems, which incorporates the Fast Multipole Method to solve large scale acoustics problems, Taylor’s transformation to account for uniform and non-uniform mean flow, impedance and non-local boundary conditions for the implementation of metamaterials. To validate BEM3D, the predictions have been benchmarked against the Finite Element Method (FEM) simulations and experimental data. It has been concluded that for no flow case BEM3D gives identical acoustics potential values against benchmarked FEM (COMSOL) predictions. For Mach number of 0.1, the BEM3D and FEM (COMSOL) predictions show small differences. The difference between BEM3D and FEM (COMSOL) predictions increases further for higher Mach number of 0.2 and 0.3. The increase in difference with Mach number is because Taylor’s Transformation gives an approximate solution for the boundary integral equation. Nevertheless, it has been concluded that Taylor’s transformation gives reasonable predictions for low Mach number of up to 0.3. BEM3D predictions have been validated against experimental data on a flat plate and a duct. Very good agreement has been found between the measured data and BEM3D predictions for sound propagation without and with the mean flow at low Mach number.

Publisher

SAGE Publications

Subject

Acoustics and Ultrasonics,Aerospace Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3