Fast topology optimization of phononic crystal‐based metastructures for vibration isolation by deep learning

Author:

Liu Chen‐Xu12,Yu Gui‐Lan1,Liu Zhanli2

Affiliation:

1. School of Civil Engineering Beijing Jiaotong University Beijing China

2. Applied Mechanics Lab., Department of Engineering Mechanics, School of Aerospace Tsinghua University Beijing China

Abstract

AbstractA novel deep learning‐based optimization (DLBO) methodology is proposed for rapidly optimizing phononic crystal‐based metastructure topologies. DLBO eliminates the need for pre‐optimized data by leveraging the learned relation from metastructure features to bandgaps. It enables optimization based on qualitative/quantitative descriptions and forms a regular generalization domain to avoid misjudgments. DLBO achieves similar or better results to genetic algorithm (GA) and only requires 0.01% of the time GA costs. Metastructures with different periodic constants and filling fractions are also optimized, offering insights for balancing space, material, and vibration isolation. Based on a newly defined objective function, an economical metastructure is customized for subway‐induced vibrations; and its performance on vibration isolation is verified through a 3D finite element model. Additionally, the datasets and codes in this study are shared.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Publisher

Wiley

Subject

Computational Theory and Mathematics,Computer Graphics and Computer-Aided Design,Computer Science Applications,Civil and Structural Engineering,Building and Construction

Reference45 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A physics-informed neural network for Kresling origami structures;International Journal of Mechanical Sciences;2024-02

2. Machine learning models in phononic metamaterials;Current Opinion in Solid State and Materials Science;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3