Investigation of Impact Strength, Water Sorption and Cytotoxicity of Denture Base Resin Reinforced with Polypropylene Fiber: In Vitro Study

Author:

Tugut Faik1ORCID,Coskun Mehmet Emre1,Akin Hakan2,Dogan Derya Ozdemir1

Affiliation:

1. Department of Prosthodontics, Faculty of Dentistry, Cumhuriyet University, Sivas, Turkey

2. Department of Prosthodontics, Faculty of Dentistry, Sakarya University, Sakarya, Turkey

Abstract

Aim: Polymethyl methacrylate is the common material used as a denture base. Ease of application, stability in the oral environment are its advantages; however, its mechanical properties should be enhanced. This study aimed to evaluate the effect of different ratios of polypropylene fiber (PPF) in addition to denture base materials on impact strength, water sorption, and cytotoxicity. Materials and Methods: Heat-cure acrylic resin specimens were prepared according to the manufacturer’s instruction by adding PPFs of 6 mm length in different ratios (1, 3, 5, 10, and 20 wt%). In order to determine the impact strength, specimens were subjected to a Charpy impact test machine after being kept in distilled water at 37°C for 48 h. A span of 40 mm was adjusted and a 0.5 J pendulum was used. The fractured surface of specimens was also analyzed using a scanning electron microscope. In addition, mouse fibroblast cells and agar diffusion tests were used for cytotoxicity determination. The results were analyzed using the Kruskal–Wallis and the Mann–Whitney U tests for determining impact strength, and Kruskal–Wallis and Tukey’s range tests were performed for determining water sorption values ( P = 0.05). Results: 5 wt% PPF group exhibited the highest water sorption and impact strength values, and the difference was statistically significant ( P < .05). On the other hand, no cytotoxic effects were determined in PPF added groups. Furthermore, increased fiber concentration caused less water sorption. Conclusion: Addition of PPFs in acrylic resin increased the impact strength and decreased water sorption without any cytotoxic effects.

Publisher

SAGE Publications

Subject

Pharmacology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3