Flexural Properties of Heat-Polymerized PMMA Denture Base Resins Reinforced with Fibers with Different Characteristics

Author:

Yerliyurt Kaan1,Taşdelen Taha Buğra2,Eğri Özlem23,Eğri Sinan24ORCID

Affiliation:

1. Department of Prosthodontics, Faculty of Dentistry, Tokat Gaziosmanpaşa University, 60250 Tokat, Türkiye

2. Institute of Graduate Studies, Bioengineering Division, Tokat Gaziosmanpaşa University, 60250 Tokat, Türkiye

3. Department of Mechanical Engineering, Faculty of Engineering and Architecture, Tokat Gaziosmanpaşa University, 60250 Tokat, Türkiye

4. Department of Chemistry, Faculty of Science and Letters, Tokat Gaziosmanpaşa University, 60250 Tokat, Türkiye

Abstract

Polymethylmethacrylate (PMMA) has been the most-widely used denture base material in prosthetic dentistry for the last 80 years. It is still one of the best alternatives when new methods are inapplicable. Due to the lack of some physical inadequacies occurring during cyclic use and accidental situations, various reinforcement strategies such as using nanoparticles, wires, fibers, and meshes have been investigated and reported. In this study, it was aimed to conduct a comparative investigation of the effect of fiber additives with different characteristics on the flexural properties of heat-cured PMMA denture base resins. Glass fibers (GFs), polypropylene fibers (PPFs), and carbon fibers (CFs) having 3, 6, and 12 mm lengths and 0.25, 0.50, and 1.0% concentrations (v/v) were used for the reinforcement of PMMA denture base resins. The flexural properties (flexural strength, flexural modulus, and maximum deformation) were determined using a three-point bending test, and three-way ANOVA analyses with Bonferroni corrections were performed on the test results. The morphologies of the fracture surfaces were analyzed using scanning electron microscopy. All three fibers exhibited reinforcement in the flexural strength (p < 0.001) and flexural modulus (p < 0.001) regardless of their length and concentration. The group with 1.0% 12 mm CF-reinforced PMMA exhibited the greatest flexural strength (94.8 ± 8.8 MPa), and that with 1.0% 3 mm GFs displayed the lowest flexural strength (66.9 ± 10.4 MPa) among the fiber-reinforced groups. The greatest value of the flexural modulus was displayed by the 1.0% 3 mm CF-reinforced resin (3288.3 ± 402.1 MPa). Although the CF-reinforced groups exhibited better flexural properties, CFs are not favorable for use as reinforcement in practice due to the dark gray discoloration of the denture base resin. It was concluded that PPF is a promising material for the reinforcement of heat-cured PMMA denture base resins.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3