Furosemide Administered before Noise Exposure can Protect the Ear

Author:

Adelman Cahtia1,Perez Ronen2,Nazarian Yoram2,Freeman Sharon1,Weinberger Jeffrey3,Sohmer Haim1

Affiliation:

1. Department of Physiology, Hebrew University-Hadassah Medical School

2. Department of Otolaryngology—Head and Neck Surgery, Shaare Zedek Medical Center, Jerusalem, Israel.

3. Department of Otolaryngology-Head and Neck Surgery (Weinberger)

Abstract

Objectives We assessed the effect of furosemide administration on noise-induced hearing loss. This drug reversibly elevates the auditory threshold by inducing a temporary reduction of the endocochlear potential and thereby suppresses the cochlear amplifier and active cochlear mechanics. Methods Mice were given a single injection of furosemide 30 minutes before exposure to 113 dB sound pressure level broadband noise. Control animals received saline solution. Furosemide was administered in other mice after the noise exposure. Auditory threshold shifts were assessed by recording auditory nerve brain stem evoked response (ABR) thresholds to broadband clicks. Results The mean ABR threshold in the group injected with furosemide and exposed to temporary threshold shift (TTS)-producing noise was elevated by 20.4 ± 12.3 dB, and that in the saline control group was elevated by 35.4 ± 18.3 dB (p < 0.02). The mean threshold elevations in the group injected with furosemide and exposed to permanent threshold shift (PTS)-producing noise and in the PTS saline control group were 15.0 ± 10.3 dB and 27.0 ± 12.7 dB, respectively (p < 0.01). Similar results were obtained when the PTS was assessed with an 8-kHz tone burst ABR. There was no significant difference in the PTS between mice given a single injection of furosemide and those given saline solution after the noise; this finding shows that furosemide is not acting as an antioxidant. Conclusions It appears that reversible hearing threshold elevation as a result of furosemide administration before noise exposure can reduce the TTS and PTS. This finding provides insight into the mechanism of noise-induced hearing loss.

Publisher

SAGE Publications

Subject

General Medicine,Otorhinolaryngology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3