Author:
Adelman Cahtia,Weinberger Jeffrey M,Kriksunov Leonid,Sohmer Haim
Abstract
Abstract
Background
The permanent hearing loss following exposure to intense noise can be due either to mechanical structural damage (tearing) caused directly by the noise or to metabolic (biochemical) damage resulting from the elevated levels of free radicals released during transduction of the sound overstimulation. Drugs which depress active cochlear mechanics (e.g. furosemide and salicylic acid) or anti-oxidants (which counteract the free radicals) are effective in reducing the threshold shift (TS) following broadband continuous noise. This study was designed to determine whether furosemide can reduce the TS following exposure to impulse noise, similar to its action with continuous broadband noise.
Methods
Shortly after furosemide injection, mice were exposed to simulated M16 rifle impulse noise produced by different loudspeakers and amplifiers in different exposure settings and, in other experiments, also to actual M16 rifle shots.
Results
Depending on the paradigm, the simulated noises either did not produce a TS, or the TS was reduced by furosemide. The drug was not effective in reducing TS resulting from actual impulse noise.
Conclusion
Simulated M16 rifle impulse noise may not truly replicate the rapid rise time and very high intensity of actual rifle shots so that the TS following exposure to such noise can be reduced by these drugs. On the other hand, actual M16 impulse noise probably causes direct (frank) mechanical damage, which is not reduced by these drugs.
Publisher
Springer Science and Business Media LLC
Subject
Public Health, Environmental and Occupational Health,Safety Research,Toxicology
Reference24 articles.
1. Clifford RE, Rogers RA: Impulse noise: theoretical solutions to the quandry of cochlear protection. Ann Otol Rhinol Laryngol 2009, 118: 417–427.
2. Folmer RL, Griest SE, Martin WH: Hearing conservation education programs for children: a review. J Sch Health 2002, 72: 51–7. 10.1111/j.1746-1561.2002.tb06514.x
3. Verbeek JH, Kateman E, Morata TC, Dreschler W, Sorgdrager B: Interventions to prevent occupational noise induced hearing loss. Cochrane Database Syst Rev 2009, 8: CD006396.
4. Kopke RD, Jackson RL, Coleman JK, Liu J, Bielefeld EC, Balough BJ: NAC for noise: from the bench top to the clinic. Hear Res 2007, 226: 114–125. 10.1016/j.heares.2006.10.008
5. Le Prell CG, Hughes LF, Miller JM: Free radical scavengers vitamins A, C, and E plus magnesium reduce noise trauma. Free Radic Biol Med 2007, 42: 1454–1463. 10.1016/j.freeradbiomed.2007.02.008
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献