Impulse Noise: Theoretical Solutions to the Quandary of Cochlear Protection

Author:

Clifford Royce E.1,Rogers Rick A.1

Affiliation:

1. Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts

Abstract

Workers in industries with impact noise, as well as soldiers exposed to supersonic blasts from armament and explosive devices, appear to be more at risk for hearing loss than are their counterparts exposed to continuous noise. Alternative considerations for hearing protection are dictated because of a disproportionately increased biophysical response in comparison to continuous noise. Impulse noise is a significant and distinct problem that requires a new strategy for hearing protection. A review of current clinical and occupational literature suggests that impulse noise may be more damaging than continuous sound. Statistical measurements such as kurtosis hold promise for the quantitative prediction of hearing loss. As sound energy to the cell increases, the mechanism of cochlear damage shifts from biochemical injury to mechanical injury. Outer hair cells appear to be more sensitive than inner hair cells to impulse noise because of their energy requirements, which lead to increased production of reactive oxygen and nitrogen species and self-destruction by apoptosis. Hearing protective devices currently in use for impulse noise include hunters' hearing devices, active noise-reduction headsets, and various in-ear plugs, including nonlinear reacting inserts. Existing equipment is hampered by the materials used and by present-day electronic technology. Antioxidants administered before sound exposure show promise in mitigating hearing loss in industrial and combat situations. New materials with improved damping, reflective, and absorption characteristics are required. Hearing protective devices that allow passage of ambient sound while blocking harmful noise might improve the compliance and safety of those exposed. Sensing devices that instantaneously and selectively hyperpolarize outer hair cells are discussed as alternate protection.

Publisher

SAGE Publications

Subject

General Medicine,Otorhinolaryngology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3