Foaming behavior of poly(lactic acid) with different D-isomer content based on supercritical CO2-induced crystallization

Author:

Chen Jinwei12ORCID,Yang Ling2,Mai Qunshan2,Li Mei2,Wu Lixuan2,Kong Ping2

Affiliation:

1. Advanced Research Center for Polymer Processing Engineering of Guangdong Province, Guangzhou, China

2. School of Light Chemical Technology, Guangdong Industry Polytechnic, Guangzhou, China

Abstract

Using supercritical carbon dioxide (sc-CO2) as a physical foaming agent, the effect of sc-CO2 on the formation of crystalline domains and subsequently on the foaming behaviors of the two grades of PLA with different D-isomer content were investigated in a wide foaming temperature range. The PLA’s final crystallinity is significantly increased with decreasing annealing temperature and by reducing the D-isomer content. Cellular structure results show that not only the crystallinity but also the crystalline morphology play an important role in cellular structure. A novel spherulite morphology including ringless and ring-banded morphology in the same spherulite was formed at lower foaming temperature, as a result, some entities were nonuniformly distributed in the PLA foams. Uniform and closed cellular structure were obtained when only the ring-banded spherulites were formed. An opened and interconnected cellular structure is tended to be formed because of the synergistic effect of high temperature and plasticization of CO2. Based on the crystallinity and morphology, a suitable foaming window as a function of temperature is proposed. It is found that PLA with 4.1% D-isomer content had much broader suitable foaming window range to produce homogeneous cellular structure.

Funder

Top Talent Project of Guangdong Industry Polytechnic in 2017

Technological Achievements Cultivation Project of Guangdong Industry Polytechnic in 2017

“Da-nian Huang” Teacher Team Project

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3