Properties of rigid polyvinyl chloride foam composites reinforced with different shape fillers

Author:

Khoshnoud Parisa1,Abu-Zahra Nidal1

Affiliation:

1. Materials Science and Engineering Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA

Abstract

In this study, the effect of reinforcements’ shape and type on the mechanical, thermal, and morphological properties of polyvinyl chloride (PVC) foam composites is investigated. For this purpose, three different fillers, longitudinal structure glass fiber, flaky structure mica, and spherical structure fly ash, were selected to prepare PVC foam composites with 0–20 wt% loading. The tensile strength in both 10 wt% reinforced mica and glass fiber composites improved slightly, while it decreased with the addition of 10 wt% fly ash. Flexural strength reached its maximum in mica and fly ash-filled composites at 10 wt% loading. Meanwhile, flexural strength exhibited higher saturation levels of longitudinal glass fibers due to their penetration within the foam cells. Charpy impact strength measurements showed a decreasing trend with increasing the filler content; however, the rate of reduction was the lowest in PVC/glass fiber foam composites. The effect of filler type and geometry on thermal and dynamic mechanical properties of PVC foam composites was studied using thermogravimetric analyzer and dynamic mechanical analysis, respectively. First decomposition temperature of PVC composites dropped slightly with the addition of fillers, where glass fiber-reinforced foam composites exhibited the lowest rate of reduction. The second decomposition step of PVC foam composites shifted toward higher temperatures with increasing the filler content. Fly ash was found to be more effective in improving the second decomposition temperature. The dynamic modulus of mica and glass fiber-reinforced composites showed an increasing trend below and above glass transition temperature, up to 10 wt% loading, while the storage modulus in fly ash-reinforced composites increased with increasing the filler content at a constant rate. Morphological studies revealed that mica flakes with a paralleled structure within cell walls and glass fibers with a penetrated structure within the cell bubbles exhibited higher agglomeration compared to fly ash composites.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

Reference43 articles.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3