Foaming epoxy-amine-carbamate: The effect of different neat amines on rheological and cellular morphology

Author:

Du Ngoc Uy Lan1ORCID,Bethke Christian1,Gong Shuaiping1,Altstaedt Volker1ORCID,Ruckdaeschel Holger1ORCID

Affiliation:

1. Department of Polymer Engineering, Universität Bayreuth, Germany

Abstract

The use of carbamate to foam epoxy depends significantly on the precured modulus to stabilize the cellular structure. The optimum precured modulus is developed from the reaction of epoxy resin and the neat amine. The selection of the neat amine relies on its reaction temperature with epoxy, which is required to be below the decomposition temperature of carbamate. This study investigates the effect of three different neat amines on the rheological behavior of foaming epoxy-carbamate-amine. They are bisphenol-A diglycidyl ether epoxy (DGEBA), isophorone diamine carbamate (IDPA.CO2), N-aminoethylpiperazine (AEP), 2,4-Diamino-1-methyl-cyclohexan (DMC) and isophorone diamine (IDPA). The mixtures of DGEBA-amine-carbamate are filled in 25% and 75% of the volume of a closed mold. Precuring is carried out at 60°C for 2 h. The foaming and complete curing are conducted at 180°C for 1 h. Having H-active at piperazine, AEP reacts with DGEBA faster and develops a higher precured modulus compared to DMC and IDPA. It is important to note that DGEBA-AEP-IDPA.CO2 exhibits viscoelastic behavior beyond 138°C, seen by its rheological storage modulus lower than loss modulus and its tan delta larger than 1. The reaction between DGEBA and the H-active piperazine of AEP leads only to linear linkage and is unable to further crosslink compared to the primary amine (-NH2). This results in a lower glass transition temperature Tg of DGEBA-AEP-IPDA.CO2. The effect of amine on foaming is more obviously at 25% filling level. DGEBA-AEP-IPDA.CO2 has more spherical and homogeneous cellular structure and the density of 285 kg/m3. Having quite similar chemical structure, both DGEBA-DMC-IPDA.CO2 and DGEBA-IPDA-IPDA.CO2 produce the epoxy foams having cell-interconnection and coalescence; their densities are also similar 301 kg/m3 and 305 kg/m3, respectively. All the foams are closed-cell at 75% of filling level. The cell morphologies are well reflecting the foaming modulus and tan delta behavior.

Funder

Deutsche Forschungsgemeinschaft

European Union Horizon 2020

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3