New Insights on Expandability of Pre-Cured Epoxy Using a Solid-State CO2-Foaming Technique

Author:

Du Uy Lan NgocORCID,Bethke Christian,Altstädt VolkerORCID,Ruckdäschel HolgerORCID

Abstract

Foaming an epoxy is challenging because the process involves the curing reaction of epoxy and hardener (from monomer to oligomer, to a gel and a final three-dimensional crosslinked network) and the loading of gas phase into the epoxy phase to develop the cellular structure. The latter process needs to be carried out at the optimum curing stage of epoxy to avoid cell coalescence and to allow expansion. The environmental concern regarding the usage of chemical blowing agent also limits the development of epoxy foams. To surmount these challenges, this study proposes a solid-state CO2 foaming of epoxy. Firstly, the resin mixture of diglycidylether of bisphenol-A (DGEBA) epoxy and polyamide hardener is pre-cured to achieve various solid-state sheets (preEs) of specific storage moduli. Secondly, these preEs undergo CO2 absorption using an autoclave. Thirdly, CO2 absorbed preEs are allowed to free-foam/expand in a conventional oven at various temperatures; lastly, the epoxy foams are post-cured. PreE has a distinctive behavior once being heated; the storage modulus is reduced and then increases due to further curing. Epoxy foams in a broad range of densities could be fabricated. PreE with a storage modulus of 4 × 104–1.5 × 105 Pa at 30 °C could be foamed to densities of 0.32–0.45 g/cm3. The cell morphologies were revealed to be star polygon shaped, spherical and irregularly shaped. The research proved that the solid-state CO2-foaming technique can be used to fabricate epoxy foams with controlled density.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference25 articles.

1. Ultra-porous and lightweight microwave absorber based on epoxy foam loaded with long carbon fibers

2. Handbook of Polymeric Foams and Foam Technology;Klempner,1991

3. Mechanical behavior of polyurethane- and epoxy foams and their glass fiber composites

4. Oil palm biomass-reinforced palm oil based polyurethane composite foam and structural sandwich;Du,2018

5. Polyurethane Resins

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3