Increasing cell density/decreasing cell size to produce microcellular and nanocellular thermoplastic foams: A review

Author:

Azdast Taher1,Hasanzadeh Rezgar1ORCID

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering, Urmia University, Urmia, Iran

Abstract

Nowadays, polymeric foams have attracted particular attention in scientific and industrial societies due to their unique properties, such as high strength to weight ratio, excellent thermal and sound insulation, and low cost. Researchers have shown that the extraordinary properties of polymeric foams such as superior thermal insulation, can be achieved by increasing the cell density/decreasing the cell size. In this regard, firstly, the most important foaming processes, i.e. batch, extrusion, and injection molding are studied in the present research. Then, cell nucleation stage as the most crucial phenomenon for achieving high cell density/small cell size is investigated in detail. In the next step, the most important researches in the field of polymeric foams are introduced in which the largest cell densities/smallest cell sizes have been achieved. The investigations show that the most remarkable results (highest cell densities/smallest cell sizes) belong to the batch process. Also, the use of nucleating agents, increasing the solubility of blowing agent into the polymer, and the use of nanoparticles are the most efficient solutions to achieve microcellular and nanocellular structures.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3