Foaming‐structural relationship of rotational molded nanocomposite foams: Box–Behnken response surface methodology implementation

Author:

Daryadel Mahsa1,Azdast Taher1ORCID

Affiliation:

1. Mechanical Engineering Department Urmia University Urmia Iran

Abstract

AbstractRotational molded foam is known as one of the most popular types of polymeric foams due to its unique properties. Hence, the production of rotational molded foam samples has been well‐addressed in the foam literature, and several researchers have tried to produce these samples using different approaches. However, there is no comprehensive research that investigates the structural properties of nanocomposite foam samples produced by a two‐step process of rotational molding and batch foaming. Therefore, the effect of nanoclay and foam processing parameters on the structural properties of the samples produced by this method was investigated in this study. For this purpose, the Box–Behnken design of response surface methodology was used. The results revealed that the foaming temperature was the most effective parameter on cell density and expansion ratio. Also, the foaming time was reported as the most effective parameter on the cell size. Then, the response variables were subjected to single‐ and multi‐objective optimizations. Finally, the addition of 1.2 wt% of nanoclay, the foaming temperature of 141°C, and the foaming time of 85 s were introduced as the most optimal conditions to simultaneously achieve maximum cell density and expansion ratio and minimum cell size in the rotational molded nanocomposite foam samples.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3