Formation mechanism and structural characteristics of unfoamed skin layer in microcellular injection-molded parts

Author:

Dong Guiwei1,Zhao Guoqun1,Guan Yanjin1,Li Shuai1,Wang Xiaoxin12

Affiliation:

1. Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, Shandong, PR China

2. Qingdao Hisense Mould Co., Ltd. Qingdao, Shandong, PR China

Abstract

The microcellular injection-molded part usually consists of a foamed core region and two unfoamed skin layers on the cross section. This paper investigated the formation process, formation mechanism and structural characteristics of the unfoamed skin layers in microcellular injection-molded part. It is found that the unfoamed skin layers are formed in two processes namely “during filling” process and “after filling” process. The shear flow and the fountain flow behaviors of the melt in the filling stage are the main controlling factors on the formation of the unfoamed skin layer in “during filling” process, and the cooling solidification of the melt in cooling stage is the fundamental reason for the formation of the unfoamed skin layer in “after filling” process. Further studies found that the unfoamed skin layer in microcellular injection-molded part has two distinct regions, the outer region is a thin frozen layer which contains deformed and broken cells, and the inner region is a relatively thick solid-like layer which has no visible cells in. The unfoamed skin layer has a minimum thickness in the gate location. The whole thickness of the unfoamed skin layer is decreased with the increase of injection speed and mold temperature, but is slightly affected by melt temperature.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3