Comparing image quality of single- and dual-energy computed tomography of the brain

Author:

Dodig Doris1ORCID,Kovačić Slavica1,Matana Kaštelan Zrinka1,Žuža Iva1,Benić Filip1,Slaven Jurković23,Miletić Damir14,Rumboldt Zoran45

Affiliation:

1. Radiology Department, Clinical Hospital Center Rijeka, Croatia

2. Clinic for Radiotherapy and Oncology, Clinical Hospital Center Rijeka, Croatia

3. Department of Medical Physics and Biophysics, University of Rijeka, Croatia

4. Department of Radiology, University of Rijeka, Croatia

5. Department of Radiology and Radiological Science, Medical University of South Carolina, USA

Abstract

Purpose Weighted average dual-energy computed tomography (DE-CT) reconstructions are considered a proxy of standard CT images of the brain, recommended for routine clinical use and used as a reference standard in DE-CT research. However, their image quality has not been assessed, which was the aim of our study. Methods Images from 81 consecutive patients who underwent both non-contrast single-energy (SE)-CT and DE-CT of the brain on the same scanner were retrospectively evaluated. Attenuation values (HU) and SD of grey matter/white matter (GM/WM) pairs, along with SD in the posterior fossa and subcalvarial region were measured. Four readers evaluated image noise, GM/WM contrast, posterior fossa and subcalvarial artefacts, as well as overall image quality. Results Weighted average DE-CT GM and WM HU were significantly lower and noise higher compared to SE-CT (GM HU 36.46 v. 41.82; WM HU 28.18 v. 29.94; GM SD 2.93 v. 2.49; and WM SD 3.16 v. 2.44, all p < 0.0001). After correcting the measured SE-CT noise for 37% higher acquisition dose, DE-CT GM noise became significantly lower (2.93 v. 3.11, p = 0.0121). Measured and dose corrected SE-CT GM/WM contrast-to-noise ratio was superior to weighted average DE-CT (3.42 and 2.74 v. 1.95, both p < 0.0001). Weighted average DE-CT had significantly less artifacts on qualitative analysis. Conclusion Weighted average DE-CT images of the brain yield less artefacts at 37% dose reduction and lower noise at SE-CT equivalent dose. Dose-adjusted GM/WM contrast-to-noise ratio of weighted average DE-CT with 0.4 weighting factor remains inferior to SE-CT images.

Publisher

SAGE Publications

Subject

Neurology (clinical),Radiology, Nuclear Medicine and imaging,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3