Improving image quality with deep learning image reconstruction in double-low-dose head CT angiography compared with standard dose and adaptive statistical iterative reconstruction

Author:

Huang Xin1,Zhao Wenzhe1,Wang Geliang1,Wang Yiming1,Li Jianying2,Li Yanshou1,Zeng Qiang1,Guo Jianxin1

Affiliation:

1. Department of Radiology, the First Affiliated Hospital of Xi’an Jiaotong University, Shaanxi province, China

2. CT Research Center, GE Healthcare China, Beijing, China

Abstract

Objective: To demonstrate similar image quality with deep learning image reconstruction (DLIR) in reduced contrast medium (CM) and radiation dose (double-low-dose) head CT angiography (CTA), in comparison with standard-dose and adaptive statistical iterative reconstruction-Veo (ASIR-V). Methods: A prospective study was performed in 63 patients who under head CTA using 256-slice CT. Patients were randomized into either the standard-dose group (n = 38) with 40 ml of Iopromide (370 mgI ml−1 at 4.5 ml s−1); or a double-low-dose group (n = 25) with CM of 25 ml at 3.0 ml s−1. For image reconstruction, the double-low-dose group used DLIR-M and DLIR-H strength, and the standard-dose group used ASIR-V with 50% strength. The CT value and standard deviation, signal-to-noise ratio and contrast-to-noise ratio of posterior fossa, neck muscles, carotid, vertebral and middle cerebral arteries were measured. The image noise, vessel edge and structure blurring and overall image quality were assessed by using a 5-grade method. The double-low-dose group reduced CM dose by 37.5% and CT dose index by 41% compared with the standard-dose group. DLIR further reduced the standard deviation value of the middle cerebral artery and posterior fossa and provided better overall subjective image quality (p < 0.05). Conclusion: DLIR significantly reduces image noise and provides higher overall image quality in the double-low-dose CTA. Advances in knowledge It is feasible to reduce CM dose by 37.5% and volume CT dose index by 41% with the combination of 80 kVp and DLIR in head CTA. Compared with ASIR-V, DLIR further reduces image noise and achieves better image quality with reduced contrast and radiation dose.

Publisher

Oxford University Press (OUP)

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3