Application of intravoxel incoherent motion (IVIM) magnetic resonance imaging in the evaluation of primitive brain tumours

Author:

Catanese A1,Malacario F2,Cirillo L3,Toni F3,Zenesini C4,Casolino D5,Bacci A3,Agati R3

Affiliation:

1. Department of Radiology, University of Bologna, S. Orsola Hospital, Bologna Italy

2. Department of Radiology, University of Naples Federico II, Italy

3. Department of Neuroradiology, Institute of Neurological Sciences of Bologna, Italy

4. Unit of Epidemiology and Biostatistic, Institute of Neurological Sciences of Bologna, Italy

5. MTS Medical Technology Solutions, Italy

Abstract

Intravoxel incoherent motion is a potential non-invasive diagnostic tool in brain tumours, without any clear guidelines for its evaluation yet. In our study, we compare intravoxel incoherent motion with dynamic susceptibility contrast magnetic resonance imaging in the quantification of tumour tissue blood perfusion in 28 patients affected by brain tumours, highlighting the issues encountered during the acquisition set-up and post-processing steps. Intravoxel incoherent motion is a new imaging tool and an alternative technique to dynamic susceptibility contrast-magnetic resonance imaging which is of considerable interest at present. This is partly because it does not require the use of a contrast agent and relies on the intrinsic properties of motion in the capillaries of the spins. Compared to dynamic susceptibility contrast-magnetic resonance imaging, the intravoxel incoherent motion technique is also characterised by better resolution because the gadolinium-based contrast agent bolus used in the standard technique results in a variation by more than 50% of the signal coming from the brain. Finally, intravoxel incoherent motion is more sensitive to the incoherent motion that originates from small capillary vessels, while the dynamic susceptibility contrast signal is also contaminated by the input from larger arteries and veins, which may result in an overestimation of the blood volume. Although there are limitations due to the heterogeneity of the sample considered in our study, intravoxel incoherent motion has been shown to be an accurate noninvasive radiological biomarker, useful to distinguish between low and high grade glial tumours.

Publisher

SAGE Publications

Subject

Neurology (clinical),Radiology, Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3