IVIM parameters mapping with artificial neural network based on mean deviation prior

Author:

Hu Guodong1,Ye Chen1,Zhong Ming2,Lei Chao1,Qin Junpeng1,Wang Lihui1

Affiliation:

1. Engineering Research Center of Text Computing & Cognitive Intelligence Ministry of Education Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province State Key Laboratory of Public Big Data College of Computer Science and Technology Guizhou University Guiyang China

2. Department of Radiology International Exemplary Cooperation Base of Precision Imaging for Diagnosis and Treatment NHC Key Laboratory of Pulmonary Immune‐related Diseases Guizhou Provincial People's Hospital Guiyang China

Abstract

AbstractBackgroundThe diffusion and perfusion parameters derived from intravoxel incoherent motion (IVIM) imaging provide promising biomarkers for noninvasively quantifying and managing various diseases. Nevertheless, due to the distribution gap between simulated and real datasets, the out‐of‐distribution (OOD) problem occurred in supervised learning‐based methods degrades their performance and hinders their real applications.PurposeTo address the OOD problem in supervised methods and to further improve the accuracy and stability of IVIM parameter estimation, this work proposes a novel learning framework called IterANN, based on mean deviation prior (MDP) between training and estimated IVIM parameters on the test set.MethodsSpecifically, MDP indicates that the mean of the estimated IVIM parameters always locates between the mean of IVIM parameters in the test and train sets. In IterANN, we adopt a very simple artificial neural network (ANN) architecture of two hidden layers with 12 neurons per hidden layer, an input layer containing the signals acquired at multiple b‐values and an output layer composed of three IVIM parameters (, and ). Inspired by MDP, the distribution of IVIM parameters in the training set (simulated data) is iteratively updated so that their mean gradually approaches the predicted values of the real data. This aims to achieve a strong correlation between the simulated data and the real data. To validate the effectiveness of IterANN, we compare it with several methods on both simulation and real acquisition datasets, including 21 healthy and 3 tumor subjects, in terms of residual errors of IVIM parameters or DW signals, the coefficients of variation (CV) of IVIM parameters, and the parameter contrast‐to‐noise ratio (PCNR) between normal and tumor tissues.ResultsOn two simulation datasets, the proposed IterANN achieves the lowest residual error in IVIM parameters, especially in the case of low signal‐to‐noise ratio (SNR = 10), the residual error of , and is decreased by (Gaussian distribution /realistic distribution) respectively comparing to the suboptimal method. On real dataset, the IterANN achieves the highest PCNR when comparing the normal and tumor regions. Additionally, the proposed IterANN demonstrated better stability, with its CV being significantly lower than that of other methods in the vast majority of cases (, paired‐sample Student's t‐test).ConclusionsThe superior performance of IterANN demonstrates that updating the distribution of the train set based on MDP can effectively solve the OOD problem, which allows us not only to improve the accuracy and stability of the estimated IVIM parameters, but also to increase the potential of IVIM in disease diagnosis.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3