Characterisation of Glucose-Dependent Insulinotropic Polypeptide Receptor Antagonists in Rodent Pancreatic Beta Cells and Mice

Author:

Perry RA1,Craig SL1ORCID,Ng MT1,Gault VA1,Flatt PR1,Irwin N1

Affiliation:

1. SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, UK

Abstract

Hypersecretion and alterations in the biological activity of the incretin hormone, glucose-dependent insulinotropic polypeptide (GIP), have been postulated as contributing factors in the development of obesity-related diabetes. However, recent studies also point to weight-reducing effects of GIP receptor activation. Therefore, generating precise experimental tools, such as specific and effective GIP receptor (GIPR) antagonists, is of key significance to better understand GIP physiology. Thus, the primary aim of the current study was to uncover improved GIPR antagonists for use in rodent studies, using human and mouse GIP sequences with N- and C-terminal deletions. Initial in vitro studies revealed that the GIPR agonists, human (h) GIP(1-42), hGIP(1-30) and mouse (m) GIP(1-30), stimulated ( P < 0.01 to P < 0.001) insulin secretion from rat BRIN-BD11 cells. Analysis of insulin secretory effects of the N- and C-terminally cleaved GIP peptides, including hGIP(3-30), mGIP(3-30), h(Pro3)GIP(3-30), hGIP(5-30), hGIP(3-42) and hGIP(5-42), revealed that these peptides did not modulate insulin secretion. More pertinently, only hGIP(3-30), mGIP(3-30) and h(Pro3)GIP(3-30) were able to significantly ( P < 0.01 to P < 0.001) inhibit hGIP(1-42)-stimulated insulin secretion. The human-derived GIPR agonist sequences, hGIP(1-42) and hGIP(1-30), reduced ( P < 0.05) glucose levels in mice following conjoint injection with glucose, but mGIP(1-30) was ineffective. None of the N- and C-terminally cleaved GIP peptides affected glucose homeostasis when injected alone with glucose. However, hGIP(5-30) and mGIP(3-30) significantly ( P < 0.05 to P < 0.01) impaired the glucose-lowering action of hGIP(1-42). Further evaluation of these most effective sequences demonstrated that mGIP(3-30), but not hGIP(5-30), effectively prevented GIP-induced elevations of plasma insulin concentrations. These data highlight, for the first time, that mGIP(3-30) represents an effective molecule to inhibit GIPR activity in mice.

Publisher

SAGE Publications

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3