Sisal fiber reinforced polyethylene terephthalate composites; Fabrication, characterization and possible application

Author:

Gudayu Adane Dagnaw1ORCID,Steuernagel Leif2,Meiners Dieter2,Woubou Ambachew Maru1

Affiliation:

1. Ethiopian Institute of Textile and Fashion Technology (EiTEX), Bahir Dar University, Bahir Dar, Ethiopia

2. Institute of Polymer Materials and Plastics Engineering (PUK), Clausthal University of Technology, Clausthal-Zellerfeld, Germany

Abstract

The use of thermoplastics (TPs) for natural fiber composites is restricted to commodity ones like polypropylene and polyethylene However, using engineered TPs such as polyethylene terephthalate (PET) will benefit from its technical and economic advantages. The research aims to characterize injection molded PET composites reinforced with sisal fibers treated differently. Polyethylene terephthalate composites containing 40 wt.% of untreated, alkaline-treated, and alkali/acetylation treated sisal fibers were prepared using compounding and injection molding processes and then characterized. It has been found that production of sisal-PET composites by compounding and injection molding has been shown to be possible. Thermal damage to sisal fiber was noticed during composite production. Based on the thermogravimetric analysis analysis, a net weight loss (excluding water loss) of 11.1%–14.0% was observed at the operating temperatures of the two processes. The addition of 40 wt.% of sisal to the PET matrix improved the tensile modulus by 137%. Further improvement by 179% was observed when alkali-treated sisal fiber was used. The combined alkali/acetylation treatment of sisal yields more enhancement by 233%. This is a significant advancement because modulus is the most influential parameter during the design and service of an engineering product. Generally, compared to the raw sisal composite (RSC) the interfacial, mechanical, thermal, and water absorption properties of the alkali treated sisal composite (Al-SC) and alkali/acetylated sisal composite (Al-ASC) specimens recorded an improvement. Relative to the natural fiber reinforced thermoplastic composites that were commercialized in the automotive industry, the produced sisal–PET composites resulted in a considerable improvement of 66.6%–190% in flexural strength and by 110.5%–410.0% in flexural modulus, depending on sisal fiber treatment and the composite to be compared. Thus, the studied composites can be recommended for various parts of automobiles.

Funder

The German Academic Exchange Service

DAAD

MoE of Ethiopia

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3