Comparative study of the crystallization behavior and morphologies of carbon and glass fiber reinforced poly(ether ether ketone) composites

Author:

Wang Pan12,Lin Qing12,Wang Yaming12ORCID,Liu Chuntai12,Shen Changyu12

Affiliation:

1. Key Laboratory of Materials Processing & Mold (Zhengzhou University), Ministry of Education, Zhengzhou, China

2. National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China

Abstract

This work aims to perform a systematic investigation on the crystallization behavior and morphologies of carbon and glass fiber reinforced PEEK. The nonisothermal and isothermal crystallization behavior was investigated by differential scanning calorimetry (DSC). The resultant morphologies were assessed by wide angle X-ray diffraction (WAXD), small angle X-ray scattering (SAXS), and polarized optical microscopy (POM) to provide details on spherulitic level, crystalline structure at unit cell, and lamellar levels. It was found that the crystallization ability of carbon fiber filled PEEK was better than that of neat PEEK, while the behavior of glass fiber filled PEEK was in an opposite trend. The incorporation of carbon fiber (or glass fiber) led to a looser packing of the unit cell or a less crystal perfection of PEEK but did not change its crystal form as well as its long period of lamellae. The isothermal crystallization kinetics was analyzed by the Avrami model, suggesting that the crystallization mechanism of carbon fiber filled PEEK was different from that of neat PEEK and its glass fiber filled composites. Nevertheless, the POM results showed that fiber-induced transcrystallization in PEEK matrix was not evidenced for either carbon or glass fiber filled PEEK. Finally, the effect of carbon and glass fiber on the crystallization of PEEK matrix was discussed to some extent.

Funder

Higher Education Discipline Innovation Project

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Ceramics and Composites

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3