A silica/epoxy resin nanocomposite exhibiting high thermal stability and low thermal expansion based on the uniform dispersion of hydrophilic colloidal silica nanospheres

Author:

Tanahashi Mitsuru1ORCID,Hirota Kazuma2

Affiliation:

1. Department of Mechanical Systems Engineering, Toyama Prefectural University, Imizu, Japan

2. Formerly, Department of Molecular Design and Engineering, Nagoya University, Nagoya, Japan

Abstract

The present study fabricated high-performance silica/epoxy resin nanocomposites having a low coefficient of linear thermal expansion (CTE) and a high glass transition temperature ( Tg). This was accomplished by dispersing colloidal silica nanospheres having hydrophilic surfaces in epoxy resins, which limited the motion of the polymer chains. Nanocomposites were produced wherein isolated primary particles of colloidal silica without silane surface modification were dispersed uniformly. These particles were generated via the breakdown of loosely bound agglomerates of spherical silica particles during the agitation of a dispersion in an epoxy resin solution. Hydrogen bonding between hydroxyl groups on the hydrophilic surfaces of the dispersed silica nanoparticles and the cross-linked epoxy polymer network evidently limited thermally-induced motion of the polymer chains, resulting in a considerable reduction in the CTE and an increase in the Tg for the nanocomposite.

Funder

Grant-in-Aid for Scientific Research (C) from Japan Society for the Promotion of Science

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3