Effect of moisture content on methane adsorption- and desorption-induced deformation of tectonically deformed coal

Author:

Zhang Zun-Guo1,Cao Shu-Gang2,Li Yong2,Guo Ping3,Yang Hongyun4,Yang Tao5

Affiliation:

1. Key Laboratory of Mine Thermodynamic Disasters and Control of Ministry of Education, China; Liaoning Technical University, China

2. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, China

3. China Coal Technology Engineering Group Chongqing Research Institute, China

4. Chongqing University, China; China Gezhouba Group Explosive Co., Ltd, China

5. North China Institute of Science and Technology, China

Abstract

Intermolecular forces that act between moisture and the atoms of the coal structure have a significant influence on methane adsorption- and desorption-induced deformation in coal. After analyzing the porous characteristics and existing forms of moisture in coal, both the adsorption-induced swelling and the desorption-induced shrinkage deformation experiments were carried out under the conditions of varying moisture content, constant temperature, and variable equilibrium pressure. Both the swelling and shrinkage volumetric strains with different coal moisture contents were fitted by Langmuir-type equations in which the fitting coefficients were functions of the moisture content. It was found that there is a lag between the swelling curve and the corresponding shrinkage curve, and a variable known as the hysteresis rate was defined to illustrate this characteristic. A mathematical model of swelling and shrinkage deformation that considers the effect of moisture content was established based on the experimental results and analysis.

Funder

National Natural Science Foundation of China

Basic Research of Frontier and Application of Chongqing

Foundation of Liaoning Educational Committee

Chongqing Postdoctoral Research Project

Publisher

Hindawi Limited

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3