The Effect of Patient-Specific Drug-Drug Interaction Alerting on the Frequency of Alerts: A Pilot Study

Author:

Horn John1,Ueng Stephen2

Affiliation:

1. University of Washington Seattle, WA, USA

2. Alameda Health System, Newark Wellness, CA, USA

Abstract

Background: False-positive drug-drug interaction alerts are frequent and result in alert fatigue that can result in prescribers bypassing important alerts. Development of a method to present patient-appropriate alerts is needed to help restore alert relevance. Objective: The purpose of this study was to assess the potential for patient-specific drug-drug interaction (DDI) alerts to reduce alert burden. Methods: This project was conducted at a tertiary care medical center. Seven of the most frequently encountered DDI alerts were chosen for developing patient-specific, algorithm-based DDI alerts. For each of the DDI pairs, 2 algorithms featuring different values for modifying factors were made. DDI alerts from the 7 drug pairs were collected over 30 days. Outcome measures included the number of DDI alerts generated before and after patient-specific algorithm application to the same patients over the same time period. Results: A total of 14 algorithms were generated, and each was evaluated by comparing the number of alerts generated by our existing, customized clinical decision support (CDS) software and the patient-specific algorithms. The CDS DDI alerting software generated an average of 185.3 alerts per drug pair over the 30-day study period. Patient-specific algorithms reduced the number of alerts resulting from the algorithms by 11.3% to 93.5%. Conclusion and Relevance: Patient-specific DDI alerting is an innovative and effective approach to reduce the number of DDI alerts, may potentially increase the appropriateness of alerts, and may decrease the potential for alert fatigue.

Publisher

SAGE Publications

Subject

Pharmacology (medical)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3