Development of Machine Learning Models to Validate a Medication Regimen Complexity Scoring Tool for Critically Ill Patients

Author:

Al-Mamun Mohammad A.1,Brothers Todd12ORCID,Newsome Andrea Sikora3ORCID

Affiliation:

1. University of Rhode Island, Kingston, RI, USA

2. Roger Williams Medical Center, Providence, RI, USA

3. The University of Georgia College of Pharmacy, Augusta, GA, USA

Abstract

Introduction: The Medication Regimen Complexity -Intensive Care Unit (MRC-ICU) is the first tool for measuring medication regimen complexity in critically ill patients. This study tested machine learning (ML) models to investigate the relationship between medication regimen complexity and patient outcomes. Methods: This study was a single-center, retrospective observational evaluation of 130 adults admitted to the medical ICU. The MRC-ICU score was utilized to improve the inpatient model’s prediction accuracy. Three models were proposed: model I, demographic data without medication data; model II, demographic data and medication regimen complexity variables; and model III: demographic data and the MRC-ICU score. A total of 6 ML classifiers was developed: k-nearest neighbor (KNN), naïve Bayes (NB), random forest, support vector machine, neural network, and logistic classifier (LC). They were developed and tested using electronic health record data to predict inpatient mortality. Results: The results demonstrated that adding medication regimen complexity variables (model II) and the MRC-ICU score (model III) improved inpatient mortality prediction.. The LC outperformed the other classifiers (KNN and NB), with an overall accuracy of 83%, sensitivity (Se) of 87%, specificity of 67%, positive predictive value of 93%, and negative predictive value of 46%. The APACHE III score and the MRC-ICU score at the 24-hour interval were the 2 most important variables. Conclusion and Relevance: Inclusion of the MRC-ICU score improved the prediction of patient outcomes on the previously established APACHE III score. This novel, proof-of-concept methodology shows promise for future application of the MRC-ICU scoring tool for patient outcome predictions.

Funder

national institutes of health

Publisher

SAGE Publications

Subject

Pharmacology (medical)

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3