Optimization of a New Non-viral Vector for Transfection: Eudragit Nanoparticles for the Delivery of a DNA Plasmid

Author:

Gargouri M.1,Sapin A.1,Bouali S.23,Becuwe P.43,Merlin JL23,Maincent P.1

Affiliation:

1. Laboratoire de Pharmacie Galénique et Biopharmacie, Nancy Université, Faculté de Pharmacie, EA 3452, 5, rue A. Lebrun, BP 80403, F-54001 Nancy, France.

2. Unité de Biologie des Tumeurs Centre Alexis Vautrin, Vandoeuvre lès Nancy, France.

3. EA SIGRETO 4421, Nancy Université.

4. Laboratoire de Biologie cellulaire, Henri-Poincaré Nancy Université, Vandoeuvre lès Nancy, France

Abstract

The development of new vectors to deliver DNA into cells for therapy of cancers or genetic diseases has been a major area of research for many years. However, the clinical application of this technology requires the development of efficient, reliable and sterile vectors enabling the transfer of genes in vivo. Non viral, polymer or lipid-based vectors offer a new impetus to gene therapy because they are less toxic than viral vectors (no endogenous recombination, fewer immunological reactions, easy production and delivery of large-sized plasmid). The aim of this study is to develop a new tool for DNA delivery composed of methacrylic polymeric (Eudragit® RS and RL) nanoparticles. These nanoparticles were prepared by two methods: nanoprecipitation and double emulsion. The nanoparticles were characterized by their size, zeta potential and amount of DNA adsorption. Cytotoxicity tests based on mitochondrial activity (MTT test) revealed that the nanoparticles had limited cytotoxicity and that this depended on both the cell type and the nanoparticle concentration. Transgene expression was observed using the Green Fluorescence Protein gene as reporter gene, and was evaluated by flow cytometry in FaDu, MDA-MB 231 and MCF-7 cell lines. The results showed that transfection rates ranging between 4 and 7% were achieved in FaDu and MDA-MB 231 cells with nanoparticles prepared by the nanoprecipitation method. In MCF-7 cells transfected with nanoparticles prepared by either the double emulsion or the nanoprecipitation method, the transfection efficiency was between 2 and 4%. Nanoparticles prepared by nanoprecipitation were slightly more efficient than nanoparticles prepared from a double emulsion. Particle size was not an important factor for transfection, since no significant difference was observed with size between 50 and 350 nm. We showed that Eudragit® RS and RL nanoparticles could introduce the transgene into different types of cells, but were generally less effective than the lipofectamine control.

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3