Vortex filamentation and fragmentation phenomena in flapping motion and effect of aspect ratio and frequency on global strain, rotation, and enstrophy

Author:

Goli Srikanth1ORCID,Roy Arnab1,Roy Subhransu2

Affiliation:

1. Department of Aerospace Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India

2. Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India

Abstract

In the present study, flow field around rigid flat plate wings executing main flapping motion has been studied using phase-locked two-dimensional particle image velocimetry measurements. Experiments have been conducted in water as a fluid medium for an asymmetric upper–lower stroke single degree of freedom main flapping motion. Two different aspect ratio (1.5 and 1.0) rectangular wings at 1.5 and 2.0 Hz flapping frequency in hovering flight mode (advance ratio, J = 0), zero wing pitch angle, and chord-based Reynolds number of the order of 104 have been studied. Velocity field and vorticity field with λ2 criterion information have been obtained for the complete stroke in great detail to reveal the minute aspects of flow dynamics. The flow features during the downstroke and upstroke have been observed to be consistent for all four cases investigated. The predominant characteristic of the flow during downstroke and upstroke has been referred to as vortex filamentation and fragmentation phenomena. Quantities such as circulation, rate of strain, rate of rotation, and enstrophy have been studied to identity the effect of minor change in aspect ratio and flapping frequency. It is found that for higher aspect ratio wing hyperbolic behavior is predominant except for end of downstroke and beginning of upstroke where elliptic behavior is observed. For lower aspect ratio, wing elliptic behavior is predominant except for end of upstroke and beginning of downstroke where hyperbolic behavior is seen. The hyperbolic behavior became stronger at higher frequency. From enstrophy distribution it is evident that higher frequencies play a more dominant role than aspect ratio in determining the budget.

Publisher

SAGE Publications

Subject

Aerospace Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3